Chemical diversity of planetary atmospheres

Éric HÉBRARD

Course overview

What - and how - do we know about the **composition** of planetary atmospheres?

Course overview

What - and how - do we know about the **composition** of planetary atmospheres?

Case studies - examples for our own Solar System and beyond...

Planetary spectra

From blackbody radiation...

... to energy balance...

...to planetary spectrum

Opacities

More than 80 mc and 240 isotopo	blecules logues										Over 70	0 billion transitions
					M	0						
	H ₂	PH ₃	AIC	Alh	CS	HNO ₃	PN	H ₂ S	CrH	ScH	2022	100
	LIH	- OH	SO ₂	CH₃CI	C ₂	BeH	PS	KCI	HCN	HNC		
	HeӉ⁺	NO	LiH*	HCI	CH ₄	NaCl	SiO	MgH	CH	CN	-9-00	
	${\rm H_3}^+$	03	H₂CO	HDO	H₂O	NH ₃	CaH	SO3	CO	<mark>€CO</mark> 2		
	H_2D^+	02	ноо	CH ₃ I	Tio	vo	FeH	CaO	¶ C₃	C ₂ H ₂		
	NS	NaH	OH_3^+	CH ₃	CH ₃ D	YO	SiH ₄	PH	SH	C ₂ H ₄	Ŋ	λ
	VN	P_2H_2	so	SiH	SiS	NiH	TiH	MgO	CH₃CI	C ₂ H ₆	To Do	
	CaF	KF	PO	LiCl	LiF	MgF	SiC	NaF	PS	C ₃ H ₈		
	NaO	OH ₃ ⁺	ZnS	SiO ₂	KOH	NaOł	CaOH	PO ₂	N ₂	SiH ₂	<	1- 13

Opacities

Observations

.....

.....

.....

.....

.....

TTTTT.

Terrestrial planets

Giant planets

Jupiter and Saturn

Titan

Titan

Titan

Exoplanets

Secondary eclipse/direct imaging

Temperature structure, chemical composition, wind speeds

Phase curve Dynamics, chemical composition

Primary eclipse Chemical composition, haziness+cloudiness

Origin of atmospheres (in a nutshell)

Elemental abundances

Temperature and condensation

Thermal structure of the solar nebula. (Albarède [2009]) Condensation sequence of most abundant elements in the solar nebula. (Barshay and Lewis [1976])

Terrestrial planets

Gas giants

Gas

Planetesimals

C/O ratio

Atmospheres of giant planets

Figure 2.1. Abundances of key elements in the atmospheres of Saturn (brown dots, and label S) and Jupiter (black squares) relative to *protosolar* values derived from the present-day photospheric values of Asplund et al. (2009). Only C/H is presently determined for Uranus and Neptune, though poorly; its best estimate from earth-based observations is shown. The values are

Atmospheres of terrestrial planets

Krissansen-Totton and Fortney [2022]

Atmospheres of the Solar System

Ghree planetary classes to rule them all?

Exo-atmospheres

Other planetary systems contain planets

very different from ours (hot Jupiters, super-Earths, mini-Neptunes, iron planets...)

Exo-atmospheres

Credits: Vivien Parmentier, @V_Parmentier

		Prope	erties	В	ulk		Ices				Alkali	s					Ro	ocks					Isotope	References
	Planet name	Teq/ Teff (K)	M (M _{jup})	н	He	H ₂ O	со	CH₄	HCN	Na	к	Li	Fe	Fe II	Mg	Ca II	Ca	Sc II	Si	Ti II	v	Cr	¹³ CO	
	KELT-9b	4048	2.88	н									н	Н	Н	Н		L		н				1,2,3,4,5,6,7,8,9
	WASP-33b	2781	2.1	н		L	L						н			н			L					2,10,11,12,13,111,115
	WASP-189	2641	1.99										н	н	L					L	L	L		108,109,110
	WASP-121b	2359	1.18	н		м				н	н	L	н	н	н	Н	Н	L			L	L		10,14,15,16,17,18,19,20
	KELT-20b	2255	3.38	н		L				н			н	н	L	н			L					21,22,23,24,25,26,115,116
	WASP-76b	2182	0.92			L				н		L	н		L	н					L	L		27,28,29,30,31,32,33,80
	HAT-P-32b	1801	0.58	L	L	L																		117,118
	WASP-77Ab	1741	2.29			н	L																L	34,35
	WASP-17b	1698	0.78			L				L														36,37
	HD209458 b	1476	0.73	L	L	н	н	L	L	С				С	С		L							38,39,40,41,42,43,44,45,46,47,48,11
lets	WASP-127b	1401	0.18			L				н	L	L												49,50
olar	XO-2b	1327	0.566							L	L													51
l B	HAT-P-1b	1322	0.525			L				L														52,53
siti	WASP-52 b	1299	0.46	L		L				н	L		1											54,55,56
an	WASP-96b	1286	0.48			L				L			1										-	57,58
-	HD189733b	1192	1.13		н	н	н		L	н	L		1											59,60,61,62,63,64,65,66,67,68,69,70
	WASP-39b	1120	0.28			L				L			1											71,72
	WASP-6b	1093	0.37			L				н	н		1										-	73,74
	WASP-69b	988	0.29		L	L				н			1											75,55,76,77
	HAT-P-12b	957	0.21			L				L													-	78,79
	HAT-P-18b	848	0.20		L	L							1										-	81,55
	HAT-P-11b	829	0.084		м	L																	•	82,83,84
	WASP-107b	739	0.12		н	L							Cor	nfider	nce le	vel:							-	85,86,87
	GJ3470b	604	0.043		L	L							Hig	h obs	erved	by at	least	2 inst	rumer	nts			1	119, 120
_	Tau Bootis b	1636	5.84			С	н						Me	dium:	obser	rved b	by one	e instru	ument	multip	ole tim	nes		88,89,90,91
itin	HD179949b	1552	0.92			м	L						Lov	v: obs	erved	once	by o	ne inst	trume	nt			2	92,93
No	51Peg b	1260	0.46			н	L						Cor	ntrove	rsial									112,113
⊢	HD 102195b	1053	0.46			L		L																94
	CQ Lupi b	~2650	25			L	L																	95
	Beta Pictoris b	~1724	12.9			н	н																	96,97,98
ctly	TYC 8998-760-1b	~1700	14			L	L																L	99
Dire	HR8799c	~1100	8.1			н	н	С																100,101,102,103
=. ⊔	HR8799b	~900	5.8			L	L	С																104,105
	51 Eridiani b	~760	9.1			н		н																106,107
Note:	only planets with a	t least tw	o differe	ent sp	ecies	detect	ed and	d only	species	s that	are d	letect	ted in	at lea	st tw	o plai	nets a	are pr	esent	ed he	re. Ph	otom	etric only	detection are discarded.

Exo-atmospheres

Chemical disequilibrium

How to explain the deviations from chemical composition observed in planetary atmospheres?

Chemical disequilibrium

How to explain the deviations from chemical composition observed in planetary atmospheres?

Thermodynamics Can a reaction occur ?

Distance along reaction coordinate

 $\Delta G_r = \Delta H_r - T \Delta S_r < 0$ for spontaneous reaction

Elementary reactions

Thermodynamics

How fast does a reaction occur ?

General form : $aA + bB \rightarrow cC + dD$ Rate : $-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$ (molecule cm⁻³ s⁻¹)

Unimolecular : I molecule falls apart $A \rightarrow \text{products}$ $\text{Rate} : -\frac{d[A]}{dt} = k[A]$ Rate constant unit : s⁻¹

Bimolecular : 2 molecules collide and react $A + B \rightarrow C + D$ Rate : $-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt} = \frac{d[D]}{dt} = k[A][B]$ Rate constant unit : cm³ molecule⁻¹ s⁻¹

Termolecular : 3 molecules collide "simultaneously" and react $A + B + M \rightarrow AB + M$ Rate : $-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[AB]}{dt} = k[A][B][M]$ Rate constant unit : cm⁶ molecule⁻² s⁻¹

Half-lives and lifetimes

Half-life = $t_{1/2}$ = time for concentration of species to fall to 1/2 present value Natural lifetime = "lifetime" = τ = time for concentration of species to fall to 1/e of present value Note that lifetime of species does not depend on its own concentration

> Unimolecular : I molecule falls apart $A \rightarrow \text{products}$ $t^A_{1/2} = \frac{-\ln(1/2)}{k}$ $\tau^A = \frac{1}{k}$

Bimolecular : 2 molecules collide and react $A + B \rightarrow C + D$ $t^{A}_{1/2} = \frac{-\ln(1/2)}{k[B]}$ $\tau^{A} = \frac{1}{k[B]}$

Termolecular : 3 molecules collide "simultaneously" and react $A + B + M \rightarrow AB + M$ $t^{A}_{1/2} = \frac{-\ln(1/2)}{k[B][M]}$ $\tau^{A} = \frac{1}{k[B][M]}$

Half-lives and lifetimes

Old CFC = CFC-11 = CFCl₃ New(ish) HCFC = HCFC-21 = CHFCl₂

Assumptions:

(1) Lifetimes determined by reaction with hydroxyl radical (OH)
(2) Typical concentration of OH in troposphere : [OH] ~ 1 × 10⁶ molecule cm⁻³
(3) Rate coefficients at room temperature :

 $k_{CFC-11} < 5.0 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k_{HCFC-21} = 2.5 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Lifetimes : $T_{CFC-11} = | / k[OH] = | / (5.0 \times 10^{-18} \times 10^{6}) = 2 \times 10^{11} \text{ s} = 6340 \text{ years}$ $T_{HCFC-21} = | / k[OH] = | / (2.5 \times 10^{-14} \times 10^{6}) = 4 \times 10^{7} \text{ s} = 1.2 \text{ years}$

Distance along reaction coordinate

$$K_{eq} = \frac{k_f}{k_r} = \frac{[ABC^{\#}]}{[A][BC]} \qquad K_{eq} = e^{-\frac{\Delta G^{\#}}{RT}} = e^{\frac{\Delta S^{\#}}{R}} e^{-\frac{\Delta H^{\#}}{RT}}$$
$$k = \frac{k_B T}{h} K_{eq} = \frac{k_B T}{h} e^{-\frac{\Delta G^{\#}}{RT}} = \frac{k_B T}{h} e^{\frac{\Delta S^{\#}}{R}} e^{-\frac{\Delta H^{\#}}{RT}}$$

Photoabsorption cross sections

Effective area of the molecule that a photon needs to traverse in order to be absorbed. The larger the absorption cross section, the easier it is to photoexcite the molecule.

Photodissociation

Species	Dissociation energy threshold (eV)	Dissociation wavelength threshold (nm)
СО	11.11	111.6
N ₂	9.76	127.0
CO ₂	5.46	227.0
O ₂	5.12	242.1
H ₂ O	5.12	242.1
H ₂	4.48	276.7
CH ₄	4.45	278.5
NH ₃	3.9	317.8

Photodissociation rates

 $A + hv \rightarrow B + C$

Rate :-
$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = J_A[A]$$
 (molecule cm⁻³ s⁻¹)

$$J_A = \int_{\lambda} \sigma_A(\lambda) \phi_A(\lambda) F(\lambda) d\lambda \qquad \text{Photolysis rate (s-1)}$$

 $\sigma_A(\lambda)$ – wavelength-dependent cross section of A (cm² molecule⁻¹) $\Phi_A(\lambda)$ – wavelength-dependent quantum yield for photolysis $F(\lambda)$ – spectral actinic flux density (photons cm⁻² s⁻¹)

Photodissociation rates

 $A + hv \rightarrow B + C$

Rate :-
$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = J_A[A]$$
 (molecule cm⁻³ s⁻¹)

$$J_A = \int_{\lambda} \sigma_A(\lambda) \phi_A(\lambda) F(\lambda) d\lambda \qquad \text{Photolysis rate (s-1)}$$

 $\sigma_{A}(\lambda) - \text{wavelength-dependent cross section of A (cm² molecule⁻¹)} \\ \Phi_{A}(\lambda) - \frac{\text{Number of excited molecules proceeding by pathway }i}{\text{Total number of photons absorbed}}$

E.g.:
$$NO_3 \rightarrow NO_3^* \rightarrow NO_2 + O$$

 $\rightarrow NO + O_2$
 $\rightarrow NO_3$
 $\rightarrow NO_3$
 $\rightarrow NO_3$

Important chemical cycles (for terrestrial planets)

	$\mathcal{V}_{\mathcal{L}}h\nu$	
Photodissociation :	$O_2 \rightarrow O + O (\lambda < 240 \text{ nm})$	Jı
Recombination :	$O + O_2 + M \rightarrow O_3 + M$	kı
Photodissociation :	$O_3 \rightarrow O_2 + O(\lambda < 1100 \text{ nm})$	J ₂
Recombination :	$O + O_3 \rightarrow O_2 + O_2$	k ₂

$$\frac{d[O]}{dt} = 2J_1(z)[O_2] + J_2(z)[O_3] - k_1[O][O_2][M] - k_2[O][O_3]$$
$$\frac{d[O_3]}{dt} = k_1[O][O_2][M] - k_2[O][O_3] - J_2(z)[O_3]$$
$$[O] = \frac{2J_1(z)[O_2] + J_2(z)[O_3]}{k_2[O_3]} \qquad [O_3] = \frac{k_1[O][O_2][M]}{k_2[O] + J_2(z)}$$

- Ozone (O₃) formation usually mediated by aerosols (Mars)
- Spatial distribution of ozone on Earth due to dynamics.

CO cycle

Photodissociation :

 $\mathcal{CO}_2 \rightarrow \mathrm{CO} + \mathrm{O} (\lambda < 169 \text{ nm})$

Recombination :

 $\frac{CO + O + M \rightarrow CO_2 + M}{O + O + M \rightarrow O_2 + M}$ (spin-forbidden)

 $2CO_2 \rightarrow 2CO + O_2$

Disagreement with the observed low abundances of CO and O₂ +

CO₂ stability problem

Venus

CO cycle

	$\mathcal{V}_{\mathcal{L}}h\nu$	
Photodissociation :	$CO_2 \rightarrow CO + O (\lambda < 169 \text{ nm})$	
		CO_2 CO
Recombination :	$\frac{CO + O + M \rightarrow CO_2 + M}{(spin-forbidden)}$	↑
	$O + O + M \rightarrow O_2 + M$	
	$\mathcal{V}_{\mathcal{L}}h\nu$	
Photodissociation :	$O_2 \rightarrow O + O (\lambda < 240 \text{ nm})$	CO_2 CO
	$\mathcal{V}_{\mathcal{L}}h\nu$	
	$H_2O \rightarrow OH + H (\lambda < 210 \text{ nm})$	H OH
Recombination :	$OH + H + M \rightarrow H_2O + M$	
Recombination .		
Oxidation :	$CO + OH \rightarrow CO_2 + H$	
		$\Box_2 \bigcirc$

Fundamental role of H_2O , even at low abundances

- If H₂O is present, this limits the amount of CO (almost non-existent on Earth)
- Mars and Venus have a lot less H₂O than Earth, and a lot more CO (though still small compared to CO₂)
- Spatial distribution of CO gives info on dynamics.

CO cycle on Mars

	2hv	
Photodissociation :	$CO_2 \rightarrow CO + O (\lambda < 169 \text{ nm})$	
Recombination :	$\frac{CO + O + M \rightarrow CO_2 + M}{O + O + M \rightarrow O_2 + M}$ (spin-fc $\frac{O + O + M \rightarrow O_2 + M}{\mathcal{V} h \nu}$	orbidden)
Photodissociation :	$O_2 \rightarrow O + O (\lambda < 240 \text{ nm})$	CO ₂ CO
	ν ₂ hν	
	$H_2O \rightarrow OH + H (\lambda < 210 \text{ nm})$	H OH
Recombination :	$OH + H + M \rightarrow H_2O + M$	
Oxidation :	$CO + OH \rightarrow CO_2 + H$	H ₂ O
$O + O_2 + M \rightarrow O_3 + M$ $H + O_2 \rightarrow OH + O_2$	$H + O_2 + M \rightarrow HO_2 + M$ $O + HO_2 \rightarrow OH + O_2$	$2 \times (H + O_2 + M \rightarrow HO_2 + M)$ $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ $H_2O_2 + h_V \rightarrow OH + OH$
$CO + OH \rightarrow CO_2 + H$	$CO + OH \rightarrow CO_2 + H$	$2 \times (CO + OH \rightarrow CO_2 + H)$
$CO + O \rightarrow CO_2$	$CO + O \rightarrow CO_2$	$2CO + O_2 \rightarrow 2CO_2$

 $HO_{\! \times}$ radicals used as catalysts in the recombination of CO and O

CO cycle on Venus

	$\mathcal{V}_{\mathcal{L}}h\nu$	
Photodissociation :	$CO_2 \rightarrow CO + O (\lambda < 169 \text{ nm})$	
Recombination :	$\frac{CO + O + M \rightarrow CO_2 + M}{O + O + M \rightarrow O_2 + M}$ (spin-forbidden)	CO ₂ CO
Photodissociation :	$O_2 \rightarrow O + O (\lambda < 240 \text{ nm})$	CO ₂ CO
	$H_2O \rightarrow OH + H (\lambda < 210 \text{ nm})$	H OH
Recombination :	$OH + H + M \rightarrow H_2O + M$	
Oxidation :	$CO + OH \rightarrow CO_2 + H$	H ₂ O

 $CO + O + aerosol \rightarrow CO_2 + aerosol$

 $CI + CO + M \rightarrow CICO + M \text{ (chloroformyl radical)}$ $CICO + O_2 + M \rightarrow CIC(O)O_2 + M \text{ (peroxycholorformyl radical)}$ $CIC(O)O_2 + O \rightarrow CO_2 + O_2 + CI$ $CO + O \rightarrow CO_2$

Cl radicals used as catalysts in the recombination of CO and O

Sulfur cycle

 $SO_2 + O + M \rightarrow SO_3 + M$

Condensation :

 $SO_3 + H_2O \rightarrow H_2SO_4$ (aerosols)

- Major source of SO₂ is volcanic outgassing
- SO₂ is an important greenhouse gas
- H_2SO_4 aerosols have an anti-greenhouse effect
- Applications : Earth, Venus, early Mars(?)

Sulfur cycle on Venus

	2 hv
Photodissociation :	$CO_2 \rightarrow CO + O (\lambda < 169 \text{ nm})$
Oxydation :	$SO_2 + O + M \rightarrow SO_3 + M$
Condensation :	$SO_3 + H_2O \rightarrow H_2SO_4$ (aerosols)
Recycling :	$H_2SO_4 \rightarrow SO_3 + H_2O$
	$SO_3 + CO \rightarrow SO_2 + CO_2$

