Star-planet tidal interactions

Tidal interactions

-Why are tides important?

- A bit of theory
\star Tides, the easy way
\star Tides, the hard way... ©
- Some constraints brought by studying tides...
\star Stars
\star Planets
\star Multi-planet systems

NASA Exoplanet Archive

Tidal interactions

NASA Exoplanet Archive

Tidal interactions

Solar system (not to scale)

Habitable Zone

Only Habitable Zone planets available for atmospheric characterization!
[e.g. Fauchez+ | 8, Lovis+ | 7]

System around cool dwarfs

Tidal interactions

Stellar tide

Rotation

Climate

To be able to correctly identify a biosignature, we need to understand the system as a whole

Tidal interactions

- Why are tides important?
- A bit of theory
\star Tides, the easy way
* Tides, the hard'way
- Some constraints brought by studying tides.
* Stars
\star Planets
* Multi-planet systems

Ingredients

- At least 2 objects (could be star-planet, planet-satellite, star-star...)
- Extended objects (beyond newtonian point mass description)
- Some kind of dissipative process (e.g. thermal dissipation, viscous dissipation...)
- Objects shouldn't be too far from each other
- Some time

Let's start simple

Tidal interaction appears when we consider that a body is not a point mass but extended

Tides are a differential gravitational effect

Tidal field

Tidal interaction appears when we consider that a body is not a point mass but extended

Acceleration (in primary frame, which is accelerating at $\mathbf{a}_{P}=\mathbf{G}(P)$):

$$
\begin{aligned}
& \left.m \mathbf{a}_{M}\right|_{P}=m \mathbf{G}(M)+\mathbf{F}^{\prime}-m \mathbf{G}(P) \\
& \left.m \mathbf{a}_{M}\right|_{P}=m(\underbrace{\mathbf{G}(M)-\mathbf{G}(P)}_{\text {Tidal field } \mathbf{C}(M)})+\mathbf{F}^{\prime}
\end{aligned}
$$

Note that the primary frame here is not rotating, other terms would appear if we were to consider a co-rotating frame (rotation + Coriolis) The tidal field $\mathbf{C}(M)=\mathbf{G}(M)-\mathbf{G}(P)$ appears only when passing from an inertial frame to the primary-centered frame

Tidal field

Tidal interaction appears when we consider that a body is not a point mass but extended

The tidal field is given by:

$$
\begin{aligned}
& \mathbf{C}(M)=G m_{S} \frac{r}{D^{3}}\left(C_{r} \mathbf{e}_{r}+C_{\theta} \mathbf{e}_{\theta}\right) \text { where } \\
& C_{r}=3 \cos ^{2} \theta-1 \text { and } C_{\theta}=-\frac{3}{2} \sin 2 \theta
\end{aligned}
$$

Tidal field

Tidal interaction appears when we consider that a body is not a point mass but extended

Primary

Simple case: coplanar, circular

Simple case: coplanar, circular
$\star \Omega_{\mathrm{p}}=\mathrm{n}_{\mathrm{s}}$
Orbital distance of secondary $a_{s}=r_{c} \quad$ Corotation radius

It's the tidal equilibrium state!

Simple case: coplanar, circular

$$
\begin{array}{cl}
\star \Omega_{\mathrm{p}}<\mathrm{n}_{\mathrm{s}} & \text { Constant time lag model (} \Delta t) \text { : e. g. Mignard, 1979; Hut } 1981 \\
\mathrm{a}_{\mathrm{s}}<r_{\mathrm{c}} & \text { Constant phase lag model }(Q \text { or } Q): \text { e. g. Goldreich } 1963
\end{array}
$$

Simple case: coplanar, circular
$\star \Omega_{p}<n_{s} \longrightarrow \begin{aligned} & \Omega_{p} \lambda \\ & n_{s}<r_{c} \lambda\end{aligned}$
$a_{s}<r_{c}$

Hot Jupiter systems

Simple case: coplanar, circular

$$
\star \Omega_{\mathrm{p}}>\mathrm{n}_{\mathrm{s}} \longrightarrow \begin{aligned}
& \Omega_{\mathrm{p}} \boldsymbol{y} \\
& \mathrm{a}_{\mathrm{s}}>\mathrm{r}_{\mathrm{c}}
\end{aligned} \quad \begin{aligned}
& \Omega_{\oplus} \boldsymbol{\searrow} \boldsymbol{n _ { \text { moon } } \boldsymbol { y }} \begin{array}{l}
\mathrm{n}_{\text {moon }} \boldsymbol{\lambda}
\end{array}
\end{aligned}
$$

Earth-Moon system

Simple case: coplanar, circular

Minimize the deformation/dissipation

- Synchronize the rotation

Not so simple case: eccentricity and obliquity

Not so simple case: eccentricity and obliquity

Not so simple case: eccentricity and obliquity

Minimize the deformation/dissipation

- Eccentricity $\boldsymbol{\rightarrow} 0$

Not so simple case: eccentricity and obliquity

Minimize the deformation/dissipation

Not so simple case: rotation, eccentricity and obliquity

Minimize the deformation/dissipation

- Eccentricity $\rightarrow 0$
- Obliquity $\rightarrow 0$
- Synchronize the rotation

$$
\Omega_{\star}=\Omega_{p}=n
$$

Is an equilibrium always possible?

$$
\star \Omega_{p}<n_{s} \rightarrow n_{n_{s}} \pi n_{n}^{\prime}
$$

Can the system reach an equilibrium $\left(\Omega_{p}=n_{s}\right)$?

Is an equilibrium always possible?

Is an equilibrium always possible?

$$
\begin{aligned}
& \star \Omega_{p}<n_{s} \longrightarrow \begin{array}{l}
\Omega_{p} \nabla \\
n_{s} \lambda
\end{array} \\
& \star \Omega_{p}>n_{s} \longrightarrow \Omega_{p} \searrow \\
& n_{s} \searrow
\end{aligned}
$$

$$
\text { Can the system reach an equilibrium }\left(\Omega_{\mathrm{p}}=\mathrm{n}_{\mathrm{s}}\right) \text { ? }
$$

Stellar tide

Planetary tide

Stellar tide

- Planet inside corotation \rightarrow planet migrates inward
- Planet outside corotation \rightarrow planet migrates outward
- Eccentricity decreases
- Inclination of planetary orbit decreases

- Timescales depend on stellar radius and the stellar dissipation

Stellar tide

- Planet inside corotation \rightarrow planet migrates inward
- Planet outside corotation \rightarrow planet migrates outward

- Eccentricity decreases
- Inclination of planetary orbit decreases
- Timescales depend on stellar radius and the stellar dissipation

In many articles, you might find the tidal quality factor Q (or time lag Δt)
Low Q (high Δt) means a fast evolution
High Q (low Δt) means a slow evolution

$$
\text { Stars: } Q_{\star} \approx 10^{5}-10^{8}[\text { Penev, } 2018]
$$

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance

Weakly viscous fluid approximation
e.g. constant time lag model [e.g. Hut 198।]

Eccentricity $=0 \rightarrow$ Synchronization
Eccentricity $\neq 0 \rightarrow$ Pseudo-synchronization

Anelastic material approximation
e.g. Andrade rheology [e.g. Efroimsky+, Makarov+ | 3]

Eccentricity $=0 \rightarrow$ Synchronization
Eccentricity $\neq 0 \rightarrow$ Spin-orbit resonance

Ex: Mercury has $P_{\text {rot }}=2 / 3$ Porb

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance \because
- Obliquity of planet decreases
- Eccentricity of planet decreases
- Planet migrates inward
- Due to deformation, planet generates heat

- Timescales depend on planetary radius and the planetary dissipation

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance
- Obliquity of planet decreases
- Eccentricity of planet decreases
- Planet migrates inward
- Due to deformation, planet generates heat
- Timescales depend on planetary radius and the planetary dissipation

In many articles, you might find Q (or Δt)
Low Q (high Δt) means a fast evolution High Q (low Δt) means a slow evolution

$$
\begin{aligned}
& \text { Stars: } Q_{\star} \approx 10^{5}-10^{8} \text { [Penev, 2018] } \\
& \text { Earth: } Q_{\oplus} \approx 12(\Delta t=638 \mathrm{~s}) \text { [Goldreich \& Soter 1966; Neron de } \\
& \text { Surgy \& Laskar 97] } \\
& \text { Jupiter: } Q_{j u p} \approx 3 \times 10^{4} \text { [e.g., Lainey }+2009 \text {, for lo's frequency] }
\end{aligned}
$$

Before we go more into details....

Any questions?

Tidal interactions

- Why are tides important?
- A bit of theory
* Tides, the easy way
\star Tides, the hard way...
- Some constraints brought by studying tides..
* Stars
* Planets
* Multi-planet systems

Tidal interactions

Tidal force perturbs the hydrostatic balance.
And this results in:

- A mass redistribution
- Perturbations of the gravitational potential

Tidal interactions

There are two components to tides:

- The equilibrium tide

Large-scale circulation resulting from the hydrostatic adjustment to the tidal perturbation

- The dynamical tide

Fluid (elastic) eigenmodes of oscillations of the distorted body

Tidal theory: Equilibrium tide

Let us consider a spherical body C (the primary) of mass M on presence of a second body S (secondary) of mass m

How does the primary adjust its shape so that all forces are balanced?
i.e. so that it is in hydrostatic equilibrium?

Hydrostatic equilibrium
$0=-\frac{1}{\rho} \nabla P-\nabla \mathscr{V}$
Pressure gradient force

Tidal theory: Equilibrium tide

You can show that the shape of the deformed primary is close to a shape for which surfaces of constant ρ coincides with surfaces of surfaces of constant \mathscr{V}

- Need to calculate \mathscr{V}

Tidal theory: perturbing potential

Let's calculate the perturbing tidal potential

Tidal theory: perturbing potential

Let us consider \mathbf{r} the position of the secondary S of mass m, and \mathbf{r}^{\prime} the position of a point P^{\prime} at the surface of the primary

The gravitational potential \mathscr{V}_{S} created by S at the point P^{\prime} is given by:

$$
\begin{aligned}
\mathscr{V}_{S}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) & =-\frac{\mathscr{G} m}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} \\
& =-\frac{\mathscr{G} m}{\sqrt{r^{2}+r^{\prime 2}-2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}}
\end{aligned}
$$

Tidal theory: perturbing potential

The gravitational potential \mathscr{V} created by P at the point P^{\prime} is given by: $\mathscr{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G} m}{\sqrt{r^{2}+r^{\prime 2}-2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}}$

The term $1 / \sqrt{r^{2}+r^{2}-2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}$ can be rewritten using Legendre polynomials:

$$
\begin{aligned}
\mathscr{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) & =-\frac{\mathscr{G} m}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}(\cos \phi) \\
& =\sum_{l=0}^{\infty} V_{l}\left(r, r^{\prime}\right)
\end{aligned}
$$

where ϕ is the angle between \mathbf{r} and \mathbf{r}^{\prime}.

Tidal theory: perturbing potential

The gravitational potential \mathscr{V} created by P at the point P^{\prime} is given by: $\mathscr{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{l=0}^{\infty} V_{l}\left(r, r^{\prime}\right)$

Tidal theory: perturbing potential

The tidal potential is therefore given by:

$$
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G}_{m}}{r} \sum_{l=2}^{\infty} P_{l}(\cos \phi)\left(\frac{r^{\prime}}{r}\right)^{l}
$$

In practice, we only consider the quadrupolar term $l=2$
This is true if $r^{\prime} \ll r$
The approximation is valid for $a>5 R_{p}$ and for small eccentricities [Mathis \& Le Poncin-Lafitte 2009]

$$
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G} m}{r} P_{2}(\cos \phi)\left(\frac{r^{\prime}}{r}\right)^{2} \propto \frac{1}{r^{3}}
$$

Tidal theory: perturbing potential

The tidal potential is therefore given by:

$$
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G}_{m}}{r} \sum_{l=2}^{\infty} P_{l}(\cos \phi)\left(\frac{r^{\prime}}{r}\right)^{l}
$$

In practice, we only consider the quadrupolar term $l=2$
This is true if $r^{\prime} \ll r$
The approximation is valid for $a>5 R_{p}$ and for small eccentricities [Mathis \& Le Poncin-Lafitte 2009]

$$
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G}_{m}}{r} P_{2}(\cos \phi)\left(\frac{r^{\prime}}{r}\right)^{2} \propto \frac{1}{r^{3}}
$$

We can express $\cos \phi$ with the longitudes φ and φ^{\prime} and colatitudes θ and θ^{\prime} of P and P^{\prime} $\cos \phi=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\varphi-\varphi^{\prime}\right) \quad$ (addition theorem)

Tidal theory: perturbing potential

The tidal potential is therefore given by:

$$
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mathscr{G}_{m}}{r}\left(\frac{r^{\prime}}{r}\right)^{2} \times\left[\frac{1}{2}\left(3 \cos ^{2} \theta^{\prime}-1\right) \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right.
$$

Change with a
frequency equal to
$+\frac{3}{4} \sin ^{2} \theta^{\prime} \sin ^{2} \theta \cos \left(2\left(\varphi-\varphi^{\prime}\right)\right)$
$\left.+\frac{3}{4} \sin 2 \theta^{\prime} \sin 2 \theta \cos \left(\varphi-\varphi^{\prime}\right)\right]$ the mean motion n Change with a frequency equal to the primary spin Ω

For the Earth-Moon case $(\Omega \gg n)$, we can see different components associated to different frequencies:

- The term in $\cos ^{2} \theta=1 / 2(1+\cos 2 \theta)$ varies with frequency $2 n$: it's the fortnightly tide
- The term in $\cos \left(\varphi-\varphi^{\prime}\right)$ varies with a frequency of $\Omega-n \approx \Omega$: it's the diurnal tide
- The term in $\cos \left(2\left(\varphi-\varphi^{\prime}\right)\right)$ varies with a frequency of $2(\Omega-n) \approx 2 \Omega$: it's the semi-diurnal tide

Tidal theory: perturbing potential

- The term in $\cos \left(2\left(\varphi-\varphi^{\prime}\right)\right)$ varies with a frequency of $2(\Omega-n) \approx 2 \Omega$: it's the semi-diurnal tide

2 high tides in one day

Tidal theory: perturbing potential

A convenient way of writing the potential comes from
Kaula [1962, 1964]:
It allows to transform the coordinates of the secondary (r, θ, φ) in useful dynamical parameters:

- semi-major axis a,
- eccentricity e
- inclination I,
- argument of periastron ω^{*},
- argument of ascending node Ω^{*}

$$
\begin{aligned}
\mathscr{V}_{\mathrm{tid}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)= & -\frac{\mathscr{G} m}{a} \sum_{l=2}^{\infty}\left(\frac{r^{\prime}}{a}\right)^{l} \sum_{m=0}^{l} \frac{(l-m)!}{(l+m)!}\left(2-\delta_{0 m}\right) P_{l}^{m}\left(\cos \theta^{\prime}\right) \sum_{p=0}^{l} \sum_{q \in \mathbb{Z}} F_{l m p}(I) G_{l p q}(e) \\
& {\left[\cos m \lambda^{\prime}\left\{\begin{array}{c}
\cos \\
\sin
\end{array}\right\}_{l-m \text { odd }}^{2-m \text { even }}\left(\left(\omega_{l m p q}\right)+(l-2 p) \omega^{*}+m \Omega^{*}\right)\right.} \\
& \left.+\sin m \lambda^{\prime}\left\{\begin{array}{r}
\sin \\
-\cos
\end{array}\right\}_{2-m \text { odd }}^{2-m \text { even }}\left(\left(\omega_{l m p q}\right)+(l-2 p) \omega^{*}+m \Omega^{*}\right)\right]=\sum_{l=2}^{\infty} \sum_{m=0}^{l} \sum_{p=0}^{l} \sum_{q \in \mathbb{Z}} V_{l m p q}
\end{aligned}
$$

$\omega_{l m p q}$ are the frequencies of the forcing and are given by: $\omega_{l m p q}=(l-2 p+q) n-m \Omega$

Tidal theory: perturbing potential

A convenient way of writing the potential comes from
Kaula [1962, 1964]:
It allows to transform the coordinates of the secondary (r, θ, φ) in useful dynamical parameters:

- semi-major axis a,
- eccentricity e
- inclination I,
- argument of periastron ω^{*},
- argument of ascending node Ω^{*}
$\omega_{l m p q}$ are the frequencies of the forcing and are given by: $\omega_{\text {lmpq }}=(l-2 p+q) n-m \Omega$

For $l=2$, a circular orbit, and a coplanar orbit, there is one excitation frequency given by:

$$
\omega_{l m p q}=2(n-\Omega)
$$

(it's the semi-diurnal frequency)

Tidal theory: perturbing potential

A convenient way of writing the potential comes from
Kaula [1962, 1964]:
It allows to transform the coordinates of the secondary (r, θ, φ) in useful dynamical parameters:

- semi-major axis a,
- eccentricity e
- inclination I,
- argument of periastron ω^{*},
- argument of ascending node Ω^{*}
$\omega_{l m p q}$ are the frequencies of the forcing and are given by: $\omega_{\text {lmpq }}=(l-2 p+q) n-m \Omega$

For $l=2$, a circular orbit, and a coplanar orbit, there is one excitation frequency given by:

$$
\omega_{l m p q}=2(n-\Omega) \quad \text { (it's the semi-diurnal frequency) }
$$

For an eccentric orbit or for an inclined orbit, additional frequencies are excited

Tidal theory: deformed body potential

Let's calculate the potential created by deformed body

Tidal theory: deformed body potential

We use here the theory of Love:
The potential of the deformed body Φ at its surface is proportional to the corresponding component of the perturbing potential $\mathscr{V}_{\text {tid }}$ at its surface [Love, 1911].

$$
\Phi_{\text {deformed body }}\left(r=R_{\text {surface }}\right)=k_{2}(\omega) \times \Phi_{\text {secondary }}\left(r=R_{\text {surface }}\right)
$$

Tidal theory: deformed body potential

The tidal response can be divided into two components:

- Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative)

Responsible for orbital precession

Tidal theory: deformed body potential

The tidal response can be divided into two components:

- Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative) Responsible for orbital precession
- Effects associated by the viscosity/rheology of the distorted body: delayed response (dissipative)

Responsible for orbital and rotational evolution

Tidal theory: deformed body potential

Tidal theory: deformed body potential

Constant phase lag
Using one tidal quality factor Q is equivalent of doing many approximations: in particular the phase lag $\epsilon_{2}(\omega)=\epsilon=\operatorname{cst}$ [Goldreich 1963]

Constant time lag
Using one time lag Δt is equivalent of doing many approximations: in particular the phase lag
$\epsilon_{2}(\omega) \propto \omega$ [Darwin 1879]

The phase lag has a smooth dependency in the excitation frequency

Equilibrium tide

\Rightarrow Appropriate for objects made of weakly viscous fluid

Tidal interactions

Tidal response depends on the properties of the extended body

Equilibrium vs dynamical tide

There are two components to tides:

- The equilibrium tide

Large-scale circulation resulting from the hydrostatic adjustment to the tidal perturbation

- The dynamical tide

Fluid (elastic) eigenmodes of oscillations of the distorted body

Adapted from

Excitation by each Fourier component of the potential

Tidal interactions

- Why are tides important?
- A bit of theory
\star Tides, the easy way
+ Tides, the hard'way
- Some constraints brought by studying tides...
\star Stars
\star Planets
* Multi-planet systems

Stellar tide

Stellar parameters

Tidal response

Orbital/rotational evolution

Stellar tide

Observational constraints

- Meibom \& Mathieu [2005] used the tidal circularization of binaries in an open cluster to estimate $Q_{\star}^{\prime} \approx 10^{6}$
- Jackson+2008 used the tidal circularization of a small sample of exoplanets and found a best fitting value of $Q_{\star}^{\prime}=10^{5.5}$ (they also fit a planetary Q_{p})
- Collier Cameron \& Jardine 2018 used the orbital distance distribution of HJs to calculate $\log _{10} Q_{\star}^{\prime}=8.26 \pm 0.14$ for the equilibrium tide regime, but a smaller value of $\log _{10} Q_{\star}^{\prime}=7.3 \pm 0.4$ for the dynamical tide regime
- Using the fact that inward migration of a massive planet leads to a spin up of the star, Carone \& Pätzold [2007] analyzed the system OGLE-TR-56 and found $Q_{\star}^{\prime}>2 \times 10^{7}$

Penev +18 also used this phenomenon for a statistical study of HJ hosts
 and find that Q_{\star}^{\prime} depends on the forcing frequency

Observational constraints

- For planetary systems close to the edge of tidal disruption, it could be possible to measure the transit timing variation due to the inward migration. Birkby+ [2014] showed that a baseline of a few years is necessary
- Recently Yee+ [2020] used the transit timing variation of the WASP-I2b system $\left(29 \pm 2 \mathrm{~ms} \mathrm{yr}^{-1}\right)$ to estimate $Q_{\star}^{\prime}=1.8 \times 10^{5}$

Stellar tide: equilibrium tide

Velocity field of the equilibrium tide

[Zahn 1966a; Remus+ 12]

Dissipation

Dissipation in convective region is higher [Zahn 1977]

Stellar tide: equilibrium tide

Velocity field of the equilibrium tide

[Zahn 1966a; Remus+12]

life span of the convective elements

Stellar tide: dynamical tide

Tidal inertial waves in the convective zone

Equilibrium tide
Equilibrium tide
Dynamical tide

Stellar tide: dynamical tide

Tidal inertial waves in the convective zone

Sun, with a rotation period of 10 days [Ogilvie \& Lin, 07]

Stellar tide: dynamical tide

Tidal inertial waves in the convective zone

Stellar tide: dynamical tide

Tidal inertial waves in the convective zone

Stellar tide: dynamical tide

Tidal inertial waves in the convective zone

Only structural part ($\Omega=\mathrm{cst}$)

Structural part + rotational part

Stellar tide: dynamical tide

Tidal response

Orbital/rotational evolution

Tidal inertial waves in the convective zone

Equilibrium tide model
Dynamical tide model

Stellar tide: dynamical tide

Tidal response

Equilibrium tide model ----
Dynamical tide model

Stellar tide: dynamical tide

Tidal response

Orbital/rotational evolution

Tidal inertial waves in the convective zone

Equilibrium tide model ----

Stellar tide: dynamical tide

Tidal response

Orbital/rotational evolution

Tidal inertial waves in the convective zone

Equilibrium tide model ----
Dynamical tide model _-
[Bolmont\&Mathis 1 6]

Stellar tide: dynamical tide

Tidal response

Orbital/rotational evolution

Effect of tidal inertial waves in the convective envelope of Sun-like stars:
Bolmont \& Mathis 2016, Gallet+17,
Benbakoura+19, Ahuir+2la...
\Rightarrow Shapes the architecture of the young planetary systems

Effect of tidal gravity waves in the radiative zone of Sun-like stars:
Ahuir+2Ib, Lazovik+2l...

Stellar tide: dynamical tide

Tidal response

Orbital/rotational evolution

Effect of tidal inertial waves in the convective envelope of Sun-like stars:
Bolmont \& Mathis 2016, Gallet+17,
Benbakoura+19, Ahuir+2la...
\Rightarrow Shapes the architecture of the young planetary systems

Effect of tidal gravity waves in the radiative zone of Sun-like stars:
Ahuir+2Ib, Lazovik+2l...
\Rightarrow Shapes the architecture of the "old" planetary systems

Stellar tide: tide vs magnetism

K star orbited by a magnetized hot Neptune [Ahuir +21]

Tidal interactions

- Why are tides important?
- A bit of theory
\star Tides, the easy, way
\star Tides, the hard'way
- Some constraints brought by studying tides...

Planetary tide

Tidal response

Orbital/rotational evolution

Rheology

Planetary tide: rocky planets/cores

Rheology

Tidal response

Planetary tide: rocky planets/cores

Tidal response

I
Weakly viscous fluid approximation e.g. constant time lag model [e.g. Hut 1981]

Eccentricity $=0 \rightarrow$ Synchronization
Eccentricity $\neq 0 \rightarrow$ Pseudo-synchronization
synchronization around periastron

Anelastic material approximation
e.g. Andrade rheology [e.g. Efroimsky+, Makarov+ I 3]

Eccentricity $=0 \rightarrow$ Synchronization Eccentricity $\neq 0 \rightarrow$ Spin-orbit resonance

Ex: Mercury has

$$
P_{\text {rot }}=2 / 3 \text { Porb }
$$

Planetary tide: rocky planets/cores

Tidal response

Orbital/rotational evolution

Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor

Planetary tide: rocky planets/liquid layers

Rheology

Tidal response

Main semi-diurnal component from measurements from TOPEX/Poseidon altimeter data

Internal gravity wave in the bay of Biscay

The major component of tidal dissipation for the Earth comes from the ocean (especially in shallow regions). Without oceans the overall dissipation of the Earth would be $\mathrm{I} / \mathrm{I} 0^{\text {th }}$ of what it is today.

Planetary tide: rocky planets/liquid layers

Tidal response

Orbital/rotational evolution

Evolution of Phobos's semi-major axis
Rocky body

[Efroimsky \& Lainey 2007]

Evolution of Phobos's semi-major axis
Fluid body

Planetary tide: rocky planets/liquid layers

Earth-Moon system

[Farhat+22]

Complex evolution with multiple crossings of resonances

Reproduces well the data!

Hemispherical	Hemispherical	Global
ocean +	ocean	ocean

Planetary tide: gas giants

Tidal response

Orbital/rotational evolution

Constraints from the Solar System

$[$ Lainey $+09,12,17]$

Tidal interactions

- Why are tides important?
- A bit of theory
\star Tides, the easy, way
\star Tides, the hard'way
- Some constraints brought by studying tides...
* Stars
* Planets
\star Multi-planet systems

Tides in multiplanet systems

Tides in N-body systems

Tidal evolution for multiple planet-systems:

If equilibrium is possible [$L_{\text {orb }}>3 / 4$ ($\left.L_{\text {orb }}+L_{\text {rot }}\right)$, Hut, 1980], then:

- Eccentricity $=0$
- Planetary spin and orbital angular momentum aligned
- Planetary spin synchronized

Tides in N-body systems

Tidal evolution for multiple planet-systems:

If equilibrium is possible [Lorb $>3 / 4$ (Lorb $+L_{\text {rot }}$), Hut, 1980], then:

\rightarrow Eccentricity reaches an equilibrium between tidal damping and planet-planet excitation
\rightarrow Obliquity reaches an equilibrium
\rightarrow Rotation depends on eccentricity and is influenced by planet-planet excitation

Tides and stability

The assessment of stability depends on whether tides are taken into account
Kepler-62 System

Borucki+ 13

Tides and stability

The assessment of stability depends on whether tides are taken into account

Constraining the eccentricity

Demory+ I I

55 Cancri

Constraining the eccentricity

Tides in N-body systems: IRAPPIST-1

Gillon+16,17

Constraining the eccentricity

Dissipation factor
$-\sigma_{p}=0.1 \sigma_{\oplus}$
—— $\sigma_{p}=1 \sigma_{\oplus}$
$-\sigma_{p}=10 \sigma_{\oplus}$

Time (years)

Time (years)

All planets should have eccentricities lower than 0.01 Planets b \& c are likely to have eccentricities lower than 0.00 I

Constraining the rotation

The rotation evolves very fast!
ln ~200,000 yr:

- Obliquity damped
-Rotation pseudo-synchronized

Constraining the rotation
\Rightarrow Impact on the climate of the planets

The rotation evolves very fast!
In ~200,000 yr:

- Obliquity damped
-Rotation pseudo-synchronized

Constraining the tidal heat flux

Non zero eccentricity and obliquity
\Rightarrow Tidal heat flux

Constraining the tidal heat flux

Tidal heating? Significant or not?

- Tidal heat flux using CTL model [from N-body simulations with tides; Turbet+ | 8]

Parameter	Tb	Tc	Td	Te	Tf	Tg	Th	Unit
ecc mean ($\times 10^{-3}$)	0.6	0.5	3.9	7.0	8.4	3.8	2.8	
ecc max $\left(\times 10^{-3}\right)$	1.5	1.2	5.9	8.3	9.7	4.8	4.0	
$\Phi_{\text {tid }}$ mean	4.8	0.17	0.17	0.09	0.01	$<10^{-3}$	< 10^{-}	
$\Phi_{\text {tid }}$ max	25	0.90	0.38	0.12	0.02	$<10^{-3}$	$<10^{-4}$	W m
$\varlimsup_{>\text {Io's tidal heat flux }[\text { Spencer }+00]} \approx \text { Earth's heat flux [Pollack+93] }$								

- Maximum tidal heating for uniform planets and Maxwell rheology [Makarov+/8]
- Tidal heat flux using model for "uniform" planets and Maxwell rheology [uniform viscosity and rigidity based on each planet's composition; Barr+|8]
- Tidal heat flux using model with multi-layer bodies and Andrade's rheology [Bolmont+20]

Tidal heat flux a

Resonance 2: I

Brown dwarf and 3 Earth-like planets [Bolmont 2018$]$

Tidal heat flux and habitability

Non resonant system

Resonance 2: I

Tidal heat flux a

Non resonant system

Resonance 2: I

Questions?

