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Tidal interactions

‣ Why are tides important?

★ Tides, the easy way

★ Tides, the hard way…

‣ Some constraints brought by studying tides…

‣ A bit of theory

★ Stars

★ Planets

★ Multi-planet systems
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There are 2258 planets (over 5043, NASA 
Exoplanet Archive) with Porb < 10 day

Tidal interactions



4

Tidal interactions
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Tidal interactions

[McQuillan+13]

Porb = P★Porb = 1/2 P★

Signs of star-
planet 

interaction?
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Habitable Zone

System around cool dwarfs

Solar system (not to scale)

Only Habitable Zone planets available for 
atmospheric characterization! 

 
[e.g. Fauchez+18, Lovis+17]
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Tidal interactions
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Planetary tideStellar tide

Distance
Eccentricity

Rotation

Winds 
Seasons

Tidal Heat Flux

Additional  
heating

Climate
To be able to correctly identify a 

biosignature, we need to 
understand the system as a whole

?
Energy
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Tidal interactions
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A bit of theory

‣ Extended objects (beyond newtonian 
point mass description)

‣ Some kind of dissipative process (e.g. 
thermal dissipation, viscous dissipation…)

No point mass 
allowed beyond this 

point
‣ At least 2 objects (could be star-planet, 

planet-satellite, star-star…)

‣ Objects shouldn’t be too far from each 
other

‣ Some time

Ingredients



Let’s start simple

14

Primary Secondary

Tidal interaction appears when we consider that a body is not a point mass but extended

P

M ( )m

S ( )mS

Tides are a differential gravitational effect 

No point mass 
allowed beyond this 

point
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Tidal interaction appears when we consider that a body is not a point mass but extended

M ( )m

P S ( )mS

Acceleration (in primary frame, which is accelerating at ):aP = G(P)
maM |P = m(G(M) − G(P)) + F′ 

Tidal field C(M)

Note that the primary frame here is not rotating, other terms would appear if we were to consider a co-rotating frame (rotation + Coriolis)

The tidal field  appears only when passing from an inertial frame to the primary-centered frameC(M) = G(M) − G(P)

maM |P = mG(M) + F′ − mG(P)

Tidal field



Tidal field
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M ( )m

P

S ( )mS

ereθ

θr

D

The tidal field is given by:

 where

 and 

C(M) = GmS
r

D3 (Crer + Cθeθ)
Cr = 3 cos2 θ − 1 Cθ = − 3

2 sin 2θ

Tidal interaction appears when we consider that a body is not a point mass but extended



Tidal field
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Primary

Secondary

Tidal bulgeTidal bulge

Tidal interaction appears when we consider that a body is not a point mass but extended



Simple case: coplanar, circular
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★Ωp = ns

Rotation frequency of primary Orbital frequency of secondary ∝ 1/P

★Ωp < ns

★Ωp > ns

ns

Ωp ns

Ωp

Three different configurations:



Simple case: coplanar, circular
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★Ωp = ns

as = rc Corotation radiusOrbital distance of secondary

It’s the tidal equilibrium state!

Earth-Moon system



Simple case: coplanar, circular

20

★Ωp < ns

as < rc

t-Δt

t

Ωp

ns

Constant time lag model ( ): e. g. Mignard, 1979; Hut 1981Δt

Constant phase lag model (  or ): e. g. Goldreich 1963Q Q′ 

ϕ



Simple case: coplanar, circular
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★Ωp < ns

Ω★ < nHJ

ns

Ωp

Hot Jupiter systems

Ω★ ➚  
nHJ ➚

as < rc

Ωp ➚  
ns ➚

Conservation of total angular momentum!
Ltot = horb, secondary + Lrot, primary

∝ a ∝ Ωp



Simple case: coplanar, circular
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★Ωp > ns

as > rc

Ωp ➘  
ns ➘

ns

Ωp

Earth-Moon system

Ω⨁ ➘  
nmoon ➘
amoon ➚
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Simple case: coplanar, circular

Ωp

Minimize the deformation/dissipation

‣ Synchronize the rotation

ns
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Not so simple case: eccentricity and obliquity 
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Not so simple case: eccentricity and obliquity 
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Not so simple case: eccentricity and obliquity 
Minimize the deformation/dissipation

‣ Eccentricity ➜ 0



Not so simple case: eccentricity and obliquity 
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Ωp

Minimize the deformation/dissipation

‣ Obliquity ➜ 0
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Not so simple case: rotation, eccentricity and obliquity 

Minimize the deformation/dissipation

‣ Eccentricity ➜ 0

‣ Obliquity ➜ 0

‣ Synchronize the rotation

Ω⋆ = Ωp = n



Is an equilibrium always possible?
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★Ωp < ns
Ωp ➚  
ns ➚

★Ωp > ns
Ωp ➘  
ns ➘

Can the system reach an 
equilibrium (Ωp = ns)? 

Ωp

ns

Ωp

ns

t

t

Yes!

No…



Is an equilibrium always possible?
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L is the total angular momentum 
(conserved quantity)
h is the orbital angular momentum

[Hut 1980]

Equilibrium exists if L>Lcrit 
(which depends on the masses 
and moments of inertia)

Stable equilibrium reachable 
if h > 3/4 L

★Ωp < ns
Ωp ➚  
ns ➚

★Ωp > ns
Ωp ➘  
ns ➘

Can the system reach an 
equilibrium (Ωp = ns)? 
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treatment by Goldreich and Soter (1966) and by McCord (1968), so that we will not 
discuss it further except to note that for the Earth-Moon system the limiting distance 
calculated by McCord (1968) for evolution either inward to, or outward from, the 
Roche limit during the age of the solar system was 70 Earth radii, on the order of the 
size of the present lunar orbit. Although this value was calculated assuming a ß of 17 
for the Earth, since it varies only as 0“2/13, it is rather insensitive to the value of Q 
chosen. For 0 = 5, the limit is 84 Earth radii; for Q = 500, 42 radii. The value of N 
corresponding to the distance limit of 70 Earth radii is 0.23 ; Aroc^ for the Earth-Moon 
system is 1.5. 

d) Evolution Diagram 

The results of the preceding sections are summarized in figure 2. Constant-L con- 
tours are drawn with arrows to indicate the direction of tidal evolution (decreasing E), 
and the locus of spin-orbit synchronism is drawn with the critical points [(^*, A*) and 
( — Q*, — A*)] indicated by asterisks. The Roche limits and the limits on the evolution 
of A set by the age of the solar system are illustrated for a planet-satellite system 
similar in mass density to the Earth. (Note that all of the terrestrial planets have 
approximately the same mass density.) For any combination of planet and satellite 
masses and spin and orbital angular velocities, figure 2 shows at a glance what the 
past and future tidal evolution has been and will be. 

III. APPLICATIONS 

a) Earth-Moon System 

As an example of the application of figure 2, consider the Earth-Moon system. The 
present state of this system is characterized by the values O = 0.792 and A = 0.307, 

Fig. 2.—Paths of tidal evolution in the (O, A0-plane are traced by arrows which show the 
direction of increasing time. Spin-orbit synchronism is represented by the dotted curve SS'. 
Evolution approaches synchronism between the points marked by asterisks, but diverges outside 
this interval. The upper limit on |A0 set by the Roche limit for satellite and planet mass densities 
equal to the Earth’s mean density, and the approximate lower limit on IVI set by the age of the 
solar system, are shown by dashed lines. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

[Counselman, 1973]

( )∝ n1/3



Is an equilibrium always possible?
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★Ωp < ns
Ωp ➚  
ns ➚

★Ωp > ns
Ωp ➘  
ns ➘

Can the system reach an equilibrium (Ωp = ns)? 
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treatment by Goldreich and Soter (1966) and by McCord (1968), so that we will not 
discuss it further except to note that for the Earth-Moon system the limiting distance 
calculated by McCord (1968) for evolution either inward to, or outward from, the 
Roche limit during the age of the solar system was 70 Earth radii, on the order of the 
size of the present lunar orbit. Although this value was calculated assuming a ß of 17 
for the Earth, since it varies only as 0“2/13, it is rather insensitive to the value of Q 
chosen. For 0 = 5, the limit is 84 Earth radii; for Q = 500, 42 radii. The value of N 
corresponding to the distance limit of 70 Earth radii is 0.23 ; Aroc^ for the Earth-Moon 
system is 1.5. 

d) Evolution Diagram 

The results of the preceding sections are summarized in figure 2. Constant-L con- 
tours are drawn with arrows to indicate the direction of tidal evolution (decreasing E), 
and the locus of spin-orbit synchronism is drawn with the critical points [(^*, A*) and 
( — Q*, — A*)] indicated by asterisks. The Roche limits and the limits on the evolution 
of A set by the age of the solar system are illustrated for a planet-satellite system 
similar in mass density to the Earth. (Note that all of the terrestrial planets have 
approximately the same mass density.) For any combination of planet and satellite 
masses and spin and orbital angular velocities, figure 2 shows at a glance what the 
past and future tidal evolution has been and will be. 

III. APPLICATIONS 

a) Earth-Moon System 

As an example of the application of figure 2, consider the Earth-Moon system. The 
present state of this system is characterized by the values O = 0.792 and A = 0.307, 

Fig. 2.—Paths of tidal evolution in the (O, A0-plane are traced by arrows which show the 
direction of increasing time. Spin-orbit synchronism is represented by the dotted curve SS'. 
Evolution approaches synchronism between the points marked by asterisks, but diverges outside 
this interval. The upper limit on |A0 set by the Roche limit for satellite and planet mass densities 
equal to the Earth’s mean density, and the approximate lower limit on IVI set by the age of the 
solar system, are shown by dashed lines. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

[Counselman, 1973]

Earth-Moon system today ( , )a = 60 R⊕ P⊕ = 24 day

Equilibrium at  and a ≈ 90 R⊕ P⊕ ≈ 52 day
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Planetary tide

Stellar tide



Stellar tide
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‣ Planet inside corotation ➜ planet migrates inward

‣ Planet outside corotation ➜ planet migrates outward

‣ Eccentricity decreases

‣ Inclination of planetary orbit decreases

‣ Timescales depend on stellar radius and the stellar dissipation
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‣ Planet inside corotation ➜ planet migrates inward

‣ Planet outside corotation ➜ planet migrates outward

‣ Eccentricity decreases

‣ Inclination of planetary orbit decreases

‣ Timescales depend on stellar radius and the stellar dissipation

In many articles, you might find the tidal quality factor  (or time lag  )Q Δt
Low  (high ) means a fast evolutionQ Δt
High  (low ) means a slow evolutionQ Δt

Stars:  [Penev, 2018]Q⋆ ≈ 105 − 108

Stellar tide
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‣ Circular orbit: quick synchronization

‣ Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance

e.g. constant time lag model [e.g. Hut 1981]

Eccentricity ≠ 0 ➜ Pseudo-synchronization

e.g. Andrade rheology [e.g. Efroimsky+, Makarov+13]

Weakly viscous fluid approximation Anelastic material approximation

Eccentricity ≠ 0 ➜ Spin-orbit resonance

Ex: Mercury has Prot = 2/3 Porb

Eccentricity = 0 ➜ Synchronization Eccentricity = 0 ➜ Synchronization

Planetary tide



41

e = 0

e ≠ 0

ϵp

h

Ωp

Orbital plane

StarPlanet

‣ Circular orbit: quick synchronization

‣ Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance

‣ Obliquity of planet decreases

‣ Eccentricity of planet decreases

‣ Planet migrates inward

Planetary tide

‣ Due to deformation, planet generates heat

‣ Timescales depend on planetary radius and the planetary dissipation
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Earth:  ( ) [Goldreich & Soter 1966; Neron de 
Surgy & Laskar 97]

Q⊕ ≈ 12 Δt = 638 s
Stars:  [Penev, 2018]Q⋆ ≈ 105 − 108

Jupiter :  [e.g., Lainey+2009, for Io’s frequency]Qjup ≈ 3 × 104

In many articles, you might find  (or  )Q Δt
Low  (high ) means a fast evolutionQ Δt
High  (low ) means a slow evolutionQ Δt

Planetary tide
‣ Circular orbit: quick synchronization

‣ Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance

‣ Obliquity of planet decreases

‣ Eccentricity of planet decreases

‣ Planet migrates inward

‣ Due to deformation, planet generates heat

‣ Timescales depend on planetary radius and the planetary dissipation
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Before we go more into 
details… 
Any questions ?
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Tidal interactions

‣ Why are tides important?

★ Tides, the easy way

★ Tides, the hard way…

‣ Some constraints brought by studying tides…

‣ A bit of theory

★ Stars

★ Planets

★ Multi-planet systems

!

"
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Primary Secondary

Tidal force perturbs the hydrostatic balance. 
And this results in: 

‣ A mass redistribution

‣ Perturbations of the gravitational potential

Tidal interactions
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There are two components to tides: 

‣ The equilibrium tide

‣ The dynamical tide

F. Remus et al.: The equilibrium tide in stars and giant planets. I.

Fig. 3. Top-left: three-dimensional view of the total (poloidal and toroidal) adiabatic equilibrium tide velocity field (white arrows). The red and
orange arrows indicate the direction of the primary’s rotation axis and the line of centers, respectively. Top-right: representation of this velocity
field at the surface of the primary (black arrows); the color-scaled background represents the normalized tidal potential intensity (blue and red
for the minimum and maximum values, respectively). Bottom-left: view of the velocity field (white arrows) in its equatorial plane of symmetry;
the color-scaled background represents the velocity value (black and orange for the minimum and maximum values, respectively). Bottom-right:
view of the velocity field (white arrows) in its meridional plane of symmetry; the color-scaled background represents the velocity value (black and
purple for the minimum and maximum values, respectively).

To determine this velocity field, we introduce the stream func-
tion Dl (x, θ) and project VT

II onto θ and ϕ

VT
II =

∑

l




0

2Dl (x, θ) cos (2ϕ − lnt)

− ∂
∂θ

[sin θDl (x, θ)] sin (2ϕ − lnt)




. (67)

We next implement the Coriolis acceleration associated with this
velocity field in Eq. (65), which we project onto the horizontal
coordinates

2 ρ0Ω
R cos θ

∂

∂θ
[sin θDl] =

∂F
∂θ
+ 2 f T

l

P2
3 (cos θ)

sin θ
, (68a)

4 ρ0Ω
R cos θDl =

2F
sin θ

+ f T
l

dP2
3 (cos θ)

dθ
, (68b)

whereF contains the scalar functions of the r.h.s. of the momen-
tum equation other than the toroidal part of the viscous force. As

before, we proceed with the elimination of F and obtain the ex-
pression for Dl

Dl = dl (x)
P2

3 (cos θ)

sin θ
, where dl =

3
ΩRρ0

f T
l =

6
lnρ0

f T
l . (69)

We rewrite the toroidal velocity field induced by the dissipation
tide as

VT
II =

∑

l




0

6
ΩRρ0

f T
l

P2
3 (cos θ)

sin θ
cos (2ϕ − lnt)

− 3
ΩRρ0

f T
l

dP2
3 (cos θ)

dθ
sin (2ϕ − lnt)




. (70)

The viscous force, as well as its associated toroidal velocity field,
produces a mass redistribution inside the star or planet, thus a
perturbation of density ρII and gravific potentialΦII. This causes
a tidal torque to be applied to the object, which will be responsi-
ble for the dynamical evolution of the system.

A132, page 7 of 12

[e.g. in a star : Remus+12a]

Large-scale circulation resulting from the 
hydrostatic adjustment to the tidal 
perturbation 

[e.g. in a gas giant: Guenel+16]

Fluid (elastic) eigenmodes of oscillations 
of the distorted body

Tidal interactions
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Tidal theory: Equilibrium tide

Primary C

Secondary S

O

m

r

M

Let us consider a spherical body C (the primary) of mass  on presence of a second body S (secondary) 
of mass 

M
m

How does the primary adjust its shape so that all 
forces are balanced?  
i.e. so that it is in hydrostatic equilibrium?

Hydrostatic equilibrium

0 = − 1
ρ

∇P − ∇,

Pressure gradient force

Gravitational potential
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Primary C

Secondary S

O

m

r

M

∇f(ρ)

∇,

f(ρ) = cst

, = cst

You can show that the shape of the deformed primary is close  
to a shape for which surfaces of constant  coincides with 
surfaces of surfaces of constant  

ρ
,

Tidal theory: Equilibrium tide

‣ Need to calculate ,
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Let’s calculate the perturbing tidal potential

Tidal theory: perturbing potential



50

Primary C

Secondary S

O

P’

m

r

r′ 

M

Let us consider  the position of the secondary S of mass , and  the position of a point  at the surface 
of the primary 

r m r′ P′ 

The gravitational potential  created by S at the 
point P’ is given by:

,S

,S(r, r′ ) = − -m
r − r′ 

= − -m
r2 + r′ 2 − 2(r . r′ )

Tidal theory: perturbing potential
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The gravitational potential created by P at the point P’ is given by:, ,(r, r′ ) = − -m
r2 + r′ 2 − 2(r . r′ )

The term  can be rewritten using Legendre 
polynomials:

1/ r2 + r′ 2 − 2(r . r′ )

,(r, r′ ) = − -m
r

∞

∑
l=0

( r′ 

r )
l

Pl(cos ϕ)

=
∞

∑
l=0

Vl(r, r′ )

where  is the angle between  and .ϕ r r′ 

ϕ
Primary C

Secondary S

O

P’

m

r

r′ 

M

Tidal theory: perturbing potential
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The gravitational potential created by P at the point P’ is given by:, ,(r, r′ ) =
∞

∑
l=0

Vl(r, r′ )

The first terms are given by:

V0(r, r′ ) = − -m
r

V1(r, r′ ) = − -m
r

cos ϕ
r′ 

r

V2(r, r′ ) = − -m
r

P2(cos ϕ)( r′ 

r )
2

= − -m
r ( 3

2 cos2 ϕ − 1) ( r′ 

r )
2

 is constant in space so 
that  is 0.
V0

f = − ∇V0

Responsible for Keplerian 
motionϕ

Primary C

Secondary S

O

P’

m

r

r′ 

M

Tidal theory: perturbing potential
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The tidal potential is therefore given by: ,tid(r, r′ ) = − -m
r

∞

∑
l=2

Pl(cos ϕ)( r′ 

r )
l

In practice, we only consider the quadrupolar term l = 2

,tid(r, r′ ) = − -m
r

P2(cos ϕ)( r′ 

r )
2

∝ 1
r3

This is true if   
The approximation is valid for  and for small eccentricities 
[Mathis & Le Poncin-Lafitte 2009]

r′ ≪ r
a > 5Rp

ϕ
Primary C

Secondary S

O

P’

m

r

r′ 

M

Tidal theory: perturbing potential
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The tidal potential is therefore given by: ,tid(r, r′ ) = − -m
r

∞

∑
l=2

Pl(cos ϕ)( r′ 

r )
l

In practice, we only consider the quadrupolar term l = 2

,tid(r, r′ ) = − -m
r

P2(cos ϕ)( r′ 

r )
2

∝ 1
r3

This is true if   
The approximation is valid for  and for small eccentricities 
[Mathis & Le Poncin-Lafitte 2009]

r′ ≪ r
a > 5Rp

We can express  with the longitudes  and  and colatitudes  and  of  and cos ϕ φ φ′ θ θ′ P P′ 

cos ϕ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′ )

ϕ
Primary C

Secondary S

O

P’

m

rθ

θ′ 

φφ′ 

r′ 

M

(addition theorem)

Tidal theory: perturbing potential
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The tidal potential is therefore given by: 

,tid(r, r′ ) = − -m
r ( r′ 

r )
2

× [1
2 (3 cos2 θ′ − 1) 1

2 (3 cos2 θ−1)

+ 3
4 sin2 θ′ sin2 θ cos (2(φ − φ′ ))

+ 3
4 sin 2θ′ sin 2θ cos(φ − φ′ )]

For the Earth-Moon case ( ), we can see different components associated to different frequencies:Ω ≫ n

Change with a 
frequency equal to 
the mean motion n
Change with a 
frequency equal to 
the primary spin Ω

constant

‣ The term in  varies with a frequency of : it’s the semi-diurnal tidecos(2(φ − φ′ )) 2(Ω − n) ≈ 2Ω
‣ The term in  varies with a frequency of : it’s the diurnal tidecos(φ − φ′ ) Ω − n ≈ Ω
‣ The term in  varies with frequency : it’s the fortnightly tidecos2 θ = 1/2(1 + cos 2θ) 2n

m
r

θ

θ′ 

φφ′ 

r′ 

M

Ω

Tidal theory: perturbing potential
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‣ The term in  varies with a frequency of : it’s the semi-diurnal tidecos(2(φ − φ′ )) 2(Ω − n) ≈ 2Ω

2 high tides in one day

Tidal theory: perturbing potential
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A convenient way of writing the potential comes from 
Kaula [1962, 1964]:  
It allows to transform the coordinates of the secondary 
( ) in useful dynamical parameters:r, θ, φ

,tid(r, r′ ) = − -m
a

∞

∑
l=2

( r′ 

a )
l l

∑
m=0

(l − m)!
(l + m)! (2 − δ0m)Pm

l (cosθ′ )
l

∑
p=0

∑
q∈ℤ

Flmp(I)Glpq(e)

[cos mλ′ {cos
sin}

2−m even

l−m odd (ωlmpqt + (l − 2p)ω*+mΩ*)
+sin mλ′ { sin

−cos}
2−m even

2−m odd (ωlmpqt + (l − 2p)ω*+mΩ*)] =
∞

∑
l=2

l

∑
m=0

l

∑
p=0

∑
q∈ℤ

Vlmpq

‣ semi-major axis , 
‣ eccentricity 
‣ inclination , 
‣ argument of periastron  ,
‣ argument of ascending node 

a
e

I
ω*

Ω*

 are the frequencies of the forcing and are given by: ωlmpq ωlmpq = (l − 2p + q)n − mΩ

Tidal theory: perturbing potential

"
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A convenient way of writing the potential comes from 
Kaula [1962, 1964]:  
It allows to transform the coordinates of the secondary 
( ) in useful dynamical parameters:r, θ, φ

‣ semi-major axis , 
‣ eccentricity 
‣ inclination , 
‣ argument of periastron  ,
‣ argument of ascending node 

a
e

I
ω*

Ω*

 are the frequencies of the forcing and are given by: ωlmpq ωlmpq = (l − 2p + q)n − mΩ

For , a circular orbit, and a coplanar orbit, there is one excitation frequency given by:l = 2

ωlmpq = 2(n − Ω)

(it’s the semi-diurnal frequency)

nΩ

Tidal theory: perturbing potential
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A convenient way of writing the potential comes from 
Kaula [1962, 1964]:  
It allows to transform the coordinates of the secondary 
( ) in useful dynamical parameters:r, θ, φ

‣ semi-major axis , 
‣ eccentricity 
‣ inclination , 
‣ argument of periastron  ,
‣ argument of ascending node 

a
e

I
ω*

Ω*

 are the frequencies of the forcing and are given by: ωlmpq ωlmpq = (l − 2p + q)n − mΩ

For , a circular orbit, and a coplanar orbit, there is one excitation frequency given by:l = 2

ωlmpq = 2(n − Ω) (it’s the semi-diurnal frequency)

For an eccentric orbit or for an inclined orbit, additional frequencies are excited

Tidal theory: perturbing potential



60

Let’s calculate the potential created by deformed body

Tidal theory: deformed body potential
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We use here the theory of Love:  
The potential of the deformed body  at its surface is proportional to the corresponding component of the 
perturbing potential  at its surface [Love, 1911].  

Φ
,tid

Primary C

Secondary S

O

rθ

θ′ 

φφ′ 

Rp

M

m

Tidal theory: deformed body potential

Φdeformed body(r = Rsurface) = k2(ω) × Φsecondary(r = Rsurface)

Response function 
(depends on properties of primary)
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Primary Secondary

The tidal response can be divided into two components: 

‣ Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative)

kl(ωlmpq) = Rekl(ωlmpq)+i Imkl(ωlmpq)

Responsible for orbital precession

Tidal theory: deformed body potential
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Primary Secondary

The tidal response can be divided into two components: 

‣ Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative)

kl(ωlmpq) = Rekl(ωlmpq)+i Imkl(ωlmpq)

‣ Effects associated by the viscosity/rheology of the distorted body: delayed response (dissipative)
Responsible for orbital precession

Responsible for orbital and rotational evolution

Tidal theory: deformed body potential
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Primary
Secondary

kl(ωlmpq) = |kl(ωlmpq) |e−iϵl(ωlmpq)

Phase lag 

−Imkl(ωlmpq) = |kl(ωlmpq) |sin ϵl(ωlmpq)

Natural way to express dissipation

Geometrical lag angle 
δl(ωlmpq) = ϵl(ωlmpq)/2

δl(ωlmpq)

Tidal theory: deformed body potential
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Primary Secondary

Tidal theory: deformed body potential

Using one tidal quality factor  is equivalent of 
doing many approximations: in particular the phase 
lag  [Goldreich 1963] 

Q

ϵ2(ω) = ϵ = cst

Constant phase lag

Using one time lag  is equivalent of doing many 
approximations: in particular the phase lag 

 [Darwin 1879] 

Δt

ϵ2(ω) ∝ ω

Constant time lag

➡ Appropriate for objects made of weakly viscous fluid

The phase lag has a smooth dependency in the excitation frequency

Equilibrium tide



[e.g. in a star : Remus+12a]

There are two components to tides: 

‣ The equilibrium tide

‣ The dynamical tide

F. Remus et al.: The equilibrium tide in stars and giant planets. I.

Fig. 3. Top-left: three-dimensional view of the total (poloidal and toroidal) adiabatic equilibrium tide velocity field (white arrows). The red and
orange arrows indicate the direction of the primary’s rotation axis and the line of centers, respectively. Top-right: representation of this velocity
field at the surface of the primary (black arrows); the color-scaled background represents the normalized tidal potential intensity (blue and red
for the minimum and maximum values, respectively). Bottom-left: view of the velocity field (white arrows) in its equatorial plane of symmetry;
the color-scaled background represents the velocity value (black and orange for the minimum and maximum values, respectively). Bottom-right:
view of the velocity field (white arrows) in its meridional plane of symmetry; the color-scaled background represents the velocity value (black and
purple for the minimum and maximum values, respectively).

To determine this velocity field, we introduce the stream func-
tion Dl (x, θ) and project VT

II onto θ and ϕ

VT
II =

∑

l




0

2Dl (x, θ) cos (2ϕ − lnt)

− ∂
∂θ

[sin θDl (x, θ)] sin (2ϕ − lnt)




. (67)

We next implement the Coriolis acceleration associated with this
velocity field in Eq. (65), which we project onto the horizontal
coordinates

2 ρ0Ω
R cos θ

∂

∂θ
[sin θDl] =

∂F
∂θ
+ 2 f T

l

P2
3 (cos θ)

sin θ
, (68a)

4 ρ0Ω
R cos θDl =

2F
sin θ

+ f T
l

dP2
3 (cos θ)

dθ
, (68b)

whereF contains the scalar functions of the r.h.s. of the momen-
tum equation other than the toroidal part of the viscous force. As

before, we proceed with the elimination of F and obtain the ex-
pression for Dl

Dl = dl (x)
P2

3 (cos θ)

sin θ
, where dl =

3
ΩRρ0

f T
l =

6
lnρ0

f T
l . (69)

We rewrite the toroidal velocity field induced by the dissipation
tide as

VT
II =

∑

l




0

6
ΩRρ0

f T
l

P2
3 (cos θ)

sin θ
cos (2ϕ − lnt)

− 3
ΩRρ0

f T
l

dP2
3 (cos θ)

dθ
sin (2ϕ − lnt)




. (70)

The viscous force, as well as its associated toroidal velocity field,
produces a mass redistribution inside the star or planet, thus a
perturbation of density ρII and gravific potentialΦII. This causes
a tidal torque to be applied to the object, which will be responsi-
ble for the dynamical evolution of the system.

A132, page 7 of 12

Large-scale circulation resulting from the 
hydrostatic adjustment to the tidal 
perturbation 

[e.g. in a gas giant: Guenel+16]

Fluid (elastic) eigenmodes of oscillations 
of the distorted body

Tidal response depends on 
the properties of the 

extended body

Tidal interactions
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There are two components to tides: 

‣ The equilibrium tide

‣ The dynamical tide

F. Remus et al.: The equilibrium tide in stars and giant planets. I.

Fig. 3. Top-left: three-dimensional view of the total (poloidal and toroidal) adiabatic equilibrium tide velocity field (white arrows). The red and
orange arrows indicate the direction of the primary’s rotation axis and the line of centers, respectively. Top-right: representation of this velocity
field at the surface of the primary (black arrows); the color-scaled background represents the normalized tidal potential intensity (blue and red
for the minimum and maximum values, respectively). Bottom-left: view of the velocity field (white arrows) in its equatorial plane of symmetry;
the color-scaled background represents the velocity value (black and orange for the minimum and maximum values, respectively). Bottom-right:
view of the velocity field (white arrows) in its meridional plane of symmetry; the color-scaled background represents the velocity value (black and
purple for the minimum and maximum values, respectively).

To determine this velocity field, we introduce the stream func-
tion Dl (x, θ) and project VT

II onto θ and ϕ

VT
II =

∑

l




0

2Dl (x, θ) cos (2ϕ − lnt)

− ∂
∂θ

[sin θDl (x, θ)] sin (2ϕ − lnt)




. (67)

We next implement the Coriolis acceleration associated with this
velocity field in Eq. (65), which we project onto the horizontal
coordinates

2 ρ0Ω
R cos θ

∂

∂θ
[sin θDl] =

∂F
∂θ
+ 2 f T

l

P2
3 (cos θ)

sin θ
, (68a)

4 ρ0Ω
R cos θDl =

2F
sin θ

+ f T
l

dP2
3 (cos θ)

dθ
, (68b)

whereF contains the scalar functions of the r.h.s. of the momen-
tum equation other than the toroidal part of the viscous force. As

before, we proceed with the elimination of F and obtain the ex-
pression for Dl

Dl = dl (x)
P2

3 (cos θ)

sin θ
, where dl =

3
ΩRρ0

f T
l =

6
lnρ0

f T
l . (69)

We rewrite the toroidal velocity field induced by the dissipation
tide as

VT
II =

∑

l
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. (70)

The viscous force, as well as its associated toroidal velocity field,
produces a mass redistribution inside the star or planet, thus a
perturbation of density ρII and gravific potentialΦII. This causes
a tidal torque to be applied to the object, which will be responsi-
ble for the dynamical evolution of the system.

A132, page 7 of 12

[e.g. in a star : Remus+12a]

Large-scale circulation resulting from the 
hydrostatic adjustment to the tidal 
perturbation 

[e.g. in a gas giant: Guenel+16]

Fluid (elastic) eigenmodes of oscillations 
of the distorted body

Equilibrium  vs dynamical tide
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Dynamical tide

2Ω N fL
ω

Inertial waves
Gravity waves

Acoustic waves

Figure 8. from Modeling the Dynamical Coupling of Solar Convection with the Radiative Interior
Brun, Miesch, & Toomre 2011 ApJ 742 79 doi:10.1088/0004-637X/742/2/79
http://dx.doi.org/10.1088/0004-637X/742/2/79
© 2011. The American Astronomical Society. All rights reserved.

[Brun+11]

i.e., convection zone of 
Sun-like stars/gas giants 
(dynamics driven by 
Coriolis acc.)

Turbulent friction 
(viscous diss.)

i.e., radiative zone of 
Sun-like stars/oceans 
(dynamics driven by 
buoyancy acc.)

Heat diffusion 
(thermal diss.)

 is the Brunt-Väisälä frequency (or buoyancy frequency)N

High frequency waves: 
tides only a perturbation

 is the inertial frequency2Ω  is the Lamb’s frequencyfL

0 ωA

Alfvén waves

 is the Alfvén frequencyωA

Adapted from 
Mathis&Remus 2013
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Figure 3. Same as Fig. 2 but for a dipolar field B0. Dashed lines
show some field lines of B0.
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Figure 4. Dissipation rate versus the Lehnert number Le for (a)
an axial field, (b) a dipolar field. Vertical dash lines represent

Le = E
2/3
m . Ek = 1.0⇥10�9, Em = 1.0⇥10�5, ! = 1.1, ↵ = 0.5.

Black triangles correspond to cases shown in Figs. 2-3.

We have mentioned that the perturbations retain the
ray dynamics of inertial waves when Le  O(E2/3

m ). We can
derive this scaling by simply comparing several typical time
scales in the system when Le ⌧ 1, Ek ⌧ 1, Em ⌧ 1 and
Pm ⌧ 1. The inertial wave propagation time in the fluid
domain is

⌧i =
L

|Vg|
⇠

✓
l
L

◆�1

⌦�1. (35)

The time scale for Alfvén waves to transversely cross the
inertial wave beams is

⌧a =
l

|Va|
⇠ l

L
Le�1⌦�1. (36)

The magnetic di↵usion time across the beams is

⌧⌘ =
l2

⌘
⇠

✓
l
L

◆2

E�1
m ⌦�1, (37)

and the viscous di↵usion time is

⌧⌫ =
l2

⌫
⇠

✓
l
L

◆2

E�1
k ⌦�1. (38)

Here l is the typical width of the wave beams, whereas L
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We have mentioned that the perturbations retain the
ray dynamics of inertial waves when Le  O(E2/3

m ). We can
derive this scaling by simply comparing several typical time
scales in the system when Le ⌧ 1, Ek ⌧ 1, Em ⌧ 1 and
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[Lin&Ogilvie18, Astoul+19]
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Dynamical tide

2Ω N fL
ω

Inertial waves
Gravity waves

Acoustic waves

 is the Brunt-Väisälä frequency (or buoyancy frequency)N

 is the inertial frequency2Ω  is the Lamb’s frequencyfL

0 ωA

Alfvén waves

 is the Alfvén frequencyωA

Excitation by each Fourier component of the potential

Adapted from 
Mathis&Remus 2013
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Tidal interactions

‣ Why are tides important?

★ Tides, the easy way

★ Tides, the hard way…

‣ Some constraints brought by studying tides…

‣ A bit of theory

★ Stars

★ Planets

★ Multi-planet systems

!
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Stellar tide
Observational constraints

‣ Meibom & Mathieu [2005] used the tidal circularization of binaries in an open cluster to estimate Q′ ⋆ ≈ 106

‣ Jackson+2008 used the tidal circularization of a small sample of 
exoplanets and found a best fitting value of  (they also fit 
a planetary )

Q′ ⋆ = 105.5

Qp

‣ Collier Cameron & Jardine 2018 used the orbital distance distribution 
of HJs to calculate  for the equilibrium tide 
regime, but a smaller value of  for the dynamical 
tide regime

log10 Q′ ⋆ = 8.26 ± 0.14
log10 Q′ ⋆ = 7.3 ± 0.4

‣ Using the fact that inward migration of a massive planet leads to a spin 
up of the star, Carone & Pätzold [2007] analyzed the system OGLE-
TR-56 and found  Q′ ⋆ > 2 × 107

Penev+18 also used this phenomenon for a statistical study of HJ hosts 
and find that  depends on the forcing frequencyQ′ ⋆

value is also consistent with the results from the longest-period
systems in our sample.

About half of the systems for which two-sided constraints
were obtained have tidal periods in the relatively narrow range
Ptide=0.7–0.9 day. This allows us to check for any secondary
dependence of Q�¢ on other system parameters, at fixed period.
We looked for trends with the planet mass, stellar mass, and
stellar spin. Of these, the spin showed the strongest correlation
with Q�¢, with a formal false alarm probability of 5.5 10 4´ - .
Figure 3 displays this result as a correlation betweenQ�¢ and the
dimensionless parameter

P

GM R

R

GM P

2 4
, 3spin
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2
2 3
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where Ωcrit is the critical angular velocity for breakup due to
centrifugal forces. In this figure, the blue points are the systems
with Ptide=0.7–0.9 day. The orange points are a separate set
of systems with Ptide in the range from 1.3 to 1.5 days. By
itself, the orange collection of points would not be sufficient to
establish that a correlation exists, but they are at least consistent
with the same slope that fits the blue points.

3.1. Self-consistency of Results

Our calculations assumed that Q�¢ is a constant in time, while
the results suggest that it actually depends sharply on
frequency. To investigate the systematic error associated with
this inconsistency, we repeated the calculations but this time
requiring Q Ptide

3.1
�¢ µ

- , with a normalization that is specific to
each system. However, as it would require additional months of
computing time to perform another iteration of the entire

calculation, we confirmed that the systematic errors are
relatively small through two more tractable calculations.
First we repeated the analysis of the WASP-50 system,

which gives the tightest constraint on Q�¢ near the middle of the
period range of our sample. We found that the inferred value of
Q�¢ differs by 0.2dex from the case in which we assumed Q�¢ to
be a constant, as shown in Figure 4. Similar tests, with similar
results, had already been performed by Penev et al. (2016) for

Figure 2. Evidence for the frequency dependence of Q�¢. Shown are the values
of Q�¢ inferred for each system, as a function of the tidal forcing period. Black
points are cases for which Q�¢ was bounded to within two orders of magnitude.
Thinner gray symbols are cases for which the two-sided limits span more than
two orders of magnitude. Gray arrows indicate lower limits. The blue curve is a
saturated power-law fit to the points with two-sided limits (Equation (2)).

Figure 3. Tentative evidence for a secondary dependence of Q�¢ on the stellar
spin rate. Shown are the values of Q�¢ inferred for selected systems, as a
function of a dimensionless spin parameter. The blue symbols correspond to
systems with tidal periods from 0.7 to 0.9 days, and the orange symbols are for
tidal periods from 1.3 to 1.5 days. The blue curve (a power-law dependence) is
a fit to blue symbols with two-sided limits. For the orange line, only the offset
was fitted, while the slope was forced to be the same as the blue line.

Figure 4. Probability distributions for the present-day Q�¢ for WASP-50,
computed under the assumption of a frequency-independent Q�¢ (solid), and the
frequency-dependent prescription for Q�¢ found in Section 3 (dashed). The
constraints are similar, supporting the claim that our results are reliable even
though they were derived under the assumption that Q�¢ = constant for each
system.

6

The Astronomical Journal, 155:165 (9pp), 2018 April Penev et al.

[Penev+18]
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Stellar tide
Observational constraints

‣ For planetary systems close to the edge of tidal disruption, it could be possible to measure the transit timing 
variation due to the inward migration. Birkby+ [2014] showed that a baseline of a few years is necessary

WTS-2 b 1485

Figure 14. Left: transit time shifts after 10 yr for known transiting hot Jupiters assuming Q′
! = 106 in equation (5). The more significantly shifted planets

are labelled. The horizontal dotted line marks the 5 s timing accuracy possible with current instrumentation. After 10 yr, strong observational constraints on
Q′

! would be available across the full stellar mass range of exoplanets host stars. Right: the amount of time after discovery one would need to wait to detect
Tshift = 5 s for a given Q′

!, e.g. after T ∼ 25 yr, one could rule out Q′
! ≤ 107 across a range of stellar masses if no detectable shift was observed.

7.2.1 WASP-18 b

Importantly, we note here that for the most extreme planet, WASP-
18 b, equations (5) and (7) give dn/dt = 5.53 × 10−19 rad s−2 (which
corresponds to a rate of change of period of dP/dt = −0.018 s yr−1)
and a corresponding Tshift ∼ 356 s after 10 yr for Q′

! = 106, which is
significantly more than the predicted Tshift = 28 s reported in Hellier
et al. (2009). There are several differences between our methods of
calculating Tshift and the WASP-18 b discovery paper, for example,
Hellier et al. (2009) used the tidal evolution formalism of Dobbs-
Dixon, Lin & Mardling (2004), which defines Q′

! to be a factor of 2
different to our adopted formalism, and they also included the effects
of stellar rotation and the stellar wind which we have neglected
here. However, none of these factors are sufficient to explain the
order of magnitude difference between the predicted Tshift values
for WASP-18 b. We also note that a Tshift of the order of hundreds
of seconds for WASP-18 b is consistent with scaling the theoretical
calculations of Penev & Sasselov (2011) for Q′

! = 106. Given that
our equations give a similar remaining lifetime for WASP-18 b
(∼0.72 Myr) to that reported by Hellier et al. (0.65 Myr), our
orbital evolution tracks and in-spiral times appear to agree. We
have therefore concluded that a simple numerical error occurred
in the WASP-18 b discovery paper at the final stage of converting
the orbital evolution into dP/dt and a corresponding transit arrival
time shift (Collier Cameron, private communication), and that under
the assumption of Q′

! = 106, observable shifts in the transit timing
of WASP-18 will arrive much earlier than previously thought. In
fact, we calculate that a shift of 28 s for the WASP-18 b transit
would only take ∼3 yr, which is a positive outcome. Maxted et al.
(2013) found no evidence for variations in the times of transit from
a linear ephemeris for WASP-18 b greater than 100 s after 3 yr,
but if Q′

! is genuinely close to 106, we expect to see evidence of
this much sooner than a decade. We also note that our predicted
timing variation for WASP-18 b over 10 yr is now much larger
than that predicted to be caused by the Applegate effect on similar
time-scales (Watson & Marsh 2010).

7.3 Current observational constraints on Q′
!

Rather than waiting to observe a decaying orbital period by mea-
suring transit arrival time shifts, can we already rule out low values

of Q′
! (!106)? For example, in the individual case of WASP-19 b,

Hellier et al. (2009) suggest Q′
! ∼ 107, else the probability of ob-

serving the planet in its current evolutionary state is unlikely given
the known population of hot Jupiters. However, the growing number
of very close-in hot Jupiters suggests that the population should be
treated as whole. Penev et al. (2012) performed a population study
of transiting exoplanets in circular orbits around stars with surface
convective zones, to find a Q′

! that would give a statistically likely
distribution of remaining planet lifetimes. They assumed that the
orbits of the planets initially evolved only under gas disc migration
and then by tidal forces alone since the zero-age main sequence.
They integrated the orbital evolution from 5 Myr based on the given
ages of its host star, and argued that Q′

! " 107 in order to fit the ob-
served population at the 99 per cent confidence level. Their largest
source of uncertainty was the error on the stellar ages, but even
accounting for this they still found inconsistency with low values
of Q′

!. However, Penev et al. (2012) point out that their result may
not be valid for other giant planet migration mechanisms, such as
dynamical scattering, and that their model is not valid for stars
without surface convective layers so they excluded any host star
with M! > 1.25 M&, which could be subject to a different mode
of tidal dissipation. We also note that high values of Q′

! for those
planets deposited close to the host star before the dispersal of the
gas disc (!10 Myr; Hernández et al. 2007; Wyatt 2008) are perhaps
expected as the tidal migration would need to be slow over the host
star’s main-sequence lifetime.

Here, we attempt a complementary study to that of Penev et al.
(2012), in that we assume that the population of hot Jupiters instead
migrated by scattering on to eccentric orbits (it is interesting to
note here that the likely bound M dwarf at 0.6 arcsec separation
from WTS-2 is a potential source of Kozai perturbations which
could also trigger the migration of the gas giant). Planets scattered
such that their eccentric orbit just grazes a = aRoche are tidally
circularized to 2aRoche (Ford & Rasio 2006; Nagasawa, Ida & Bessho
2008), and we assume that any inside 2aRoche at present day are
assumed to have migrated under tidal forces alone from there (see
Fig. 13). The key difference is that we assume the scattering event
can occur at any point during the planet’s total lifetime so the tidal
forces have not necessarily been dominant during the majority of the
planet’s lifetime. This assumption means that the pile-up of planets
near 2aRoche is constantly replenished. If planets are continuously

MNRAS 440, 1470–1489 (2014)
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Transit time shift after 10 years 
assuming  (circular orbits) Q′ ⋆ = 106

[Birkby+14]

‣ Recently Yee+ [2020] used the transit timing variation of the 
WASP-12b system ( ) to estimate 29 ± 2 ms yr−1 Q′ ⋆ = 1.8 × 105
8

Orbit Number

r it

O u t ti

Figure 4. Transit and occultation timing residuals, after subtracting the best-fitting constant-period model. Open circles
denote those points previously compiled in Patra et al. (2017); solid squares are the new transit and occultation times compiled
in this work. The blue line shows the expected residuals for the best-fitting orbital decay model, while the red line shows the
best-fitting apsidal precession model.

running the code for > 10 autocorrelation times. We
also double-checked convergence by inspecting the pos-
teriors and computing the Geweke scores for each chain
(Geweke 1992). Table 6 gives the fit results.
As was already shown by Maciejewski et al. (2016)

and Patra et al. (2017), the constant period model does
not fit the data. The minimum value of �2 is 380.7 with
156 degrees of freedom. Figure 4 shows the residuals.
Also plotted are the best-fitting model curves for the
orbital decay and apsidal precession models. The best-
fitting orbital decay model has �2

min = 167.6, while the
best-fitting apsidal precession model has �2

min = 179.7.
Thus, while both models fit the data much better than
the constant-period model, the orbital decay model is
preferred. The di↵erence in �2 is 12.1. Patra et al.
(2017) also found a preference for orbital decay, but with
a weaker statistical significance (��2 = 5.5). Most of
the increase in ��2 is from the newest Spitzer observa-
tions of occultations, for which the midpoints are con-
sistent with the predictions of the orbital decay model,
but occurred earlier than would be expected based on
the apsidal precession model.
Our confidence that orbital decay is a better descrip-

tion of the data is enhanced by the fact that the orbital
decay model has only 3 free parameters while the apsidal

precession model has 5 free parameters. A commonly
used way to reward a model for fitting the data with
fewer free parameters is to compare models with the
Bayesian Information Criterion (BIC; Schwarz 1978):

BIC = �2 + k log n, (6)

where k is the number of free parameters, and n the
number of data points. In this case, the BIC favors the
orbital decay model by �(BIC) = 22.3. The interpre-
tation of this number is not completely straightforward,
but if we assume the posterior distribution of all the pa-
rameters to be a multivariate Gaussian function, then
there is a simple relation between �BIC and the Bayes
factor B:

B = exp [��(BIC)/2] = 70,000, (7)

representing an overwhelming preference for the orbital
decay model.

5.2. Radial Velocity Analysis

5.2.1. Rømer E↵ect

If the center of mass of the star-planet system is ac-
celerating along the line of sight with a magnitude v̇r,
then the apparent period of the hot Jupiter would be

[Yee+20]
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Fig. 4 Left: (a) velocity field of the equilibrium tide at the surface of a convective star or planet
represented by black arrows. The red and orange arrows represent the rotation axis and the
direction of the companion, respectively. The colors from blue to red give the intensity of the tidal
potential (Taken from Remus et al. 2012a, courtesy of Astronomy & Astrophysics). Middle: (b)
viscous dissipation of the kinetic energy of a tidal inertial wave attractor in the convective
envelope of a solar-type star with the solar latitudinal differential rotation (see also Guenel et al.
2016a). Right: (c) direct numerical simulation of the nonlinear interactions between the convective
turbulence and an oscillatory tidal flow (Taken from Ogilvie and Lesur 2012, courtesy of Monthly
Noticies of the Royal Astronomical Society)

see also Remus, Mathis and Zahn 2012 (Fig. 4 – left panel)) and its dissipation
by the friction applied by turbulence and the diffusion of heat in convective and
radiative zones, respectively (Zahn 1966a,b). He demonstrated that the dissipation
of the equilibrium tide is efficient in the convective envelope of low-mass stars

[Zahn 1966a; Remus+12]

Velocity field of the equilibrium tide

Friction applied by turbulence

Dissipation

Diffusion of heat

Dissipation in convective region is higher [Zahn 1977]
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Fig. 4 Left: (a) velocity field of the equilibrium tide at the surface of a convective star or planet
represented by black arrows. The red and orange arrows represent the rotation axis and the
direction of the companion, respectively. The colors from blue to red give the intensity of the tidal
potential (Taken from Remus et al. 2012a, courtesy of Astronomy & Astrophysics). Middle: (b)
viscous dissipation of the kinetic energy of a tidal inertial wave attractor in the convective
envelope of a solar-type star with the solar latitudinal differential rotation (see also Guenel et al.
2016a). Right: (c) direct numerical simulation of the nonlinear interactions between the convective
turbulence and an oscillatory tidal flow (Taken from Ogilvie and Lesur 2012, courtesy of Monthly
Noticies of the Royal Astronomical Society)

see also Remus, Mathis and Zahn 2012 (Fig. 4 – left panel)) and its dissipation
by the friction applied by turbulence and the diffusion of heat in convective and
radiative zones, respectively (Zahn 1966a,b). He demonstrated that the dissipation
of the equilibrium tide is efficient in the convective envelope of low-mass stars

[Zahn 1966a; Remus+12]

Velocity field of the equilibrium tide A&A 544, A132 (2012)

The ratio Φ̂II,l(1)/Ul = k2 sin ε is similar to kad
2 = k2 cos ε, but ap-

plied here to the dissipative tide. By analogy with an electric cir-
cuit, we then define the quality factor Q > 0 (see Ferraz-Mello
et al. 2008; Efroimsky 2012) by

1
Q (σl)

=

∣∣∣Im k̃2 (σl)
∣∣∣

k2 (σl)
= sin |ε (σl) |, (93)

such that the tidal dissipation is given by

k2 (σl)
Q (σl)

=
∣∣∣Im k̃2 (σl)

∣∣∣ =

∣∣∣∣∣∣∣
Φ̂II,l(1)
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∣∣∣∣∣∣∣

= 4π
2088

35
R2

mA gs
×

∣∣∣∣∣∣σl

∫ 1

xBCZ

x8η(x) dx

∣∣∣∣∣∣ , (94)

where we have recalled the expression of Eq. (85). We note that
the ratio k2 (σl)/Q (σl) can be frequency-dependent, whereas kad

2
cannot. This tidal quality factor is also linked to the geometri-
cal lag angle δ, which is half the phase lag ε (see Efroimsky &
Lainey 2007)

k2 (σl)
Q (σl)

= k2 (σl) sin |ε (σl) | = k2 (σl) sin |2δ (σl)| . (95)

Recalling Eq. (85) of Φ̂II,l(1)/Ul, we notice that when the turbu-
lent viscosity does not depend on tidal frequency, the tidal lag
angle δ (σl) = σl ∆t (σl) is proportional to the tidal frequency,
which means that the time lag ∆t (σl) of the tide is then con-
stant, and takes the same value for each Fourier component of
the tide: this has been referred to as the weak friction approxi-
mation (Hut 1981). It corresponds to the slow tide (tconv < Ptide),
as illustrated in Fig. 4. In the opposite case where tconv > Ptide,
the tidal angle δ is independent of the tidal frequency, as are both
the phase lag ε and the quality factor Q, such that the time lag
∆t = δ/σl is inversely proportional to the tidal frequency.

4.2. The disturbing function

We now use the disturbing function method described in
Brouwer & Clemence (1961), Kaula (1962), Yoder (1995–97),
Correia & Laskar (2003a,b), and Mathis & Le Poncin-Lafitte
(2009) (hereafter MLP09) to determine ΓII and the associated
variations in both the bodies’ angular momentum and the orbital
Keplerian elements of B (namely, a and e).

The first step in achieving this goal is to introduce a supple-
mentary body C with a mass mC, which we call the orbiter, to the
primary A and the perturber B (see Fig. 5 and Kaula 1962). The
Keplerian elements of its orbit are a∗, e∗, and M∗ = n∗t where n∗

is the associated mean motion.
We next identify the disturbing function on C with the per-

turbed external gravific potential of A

R = Φ′ (rC, t) =
∑

l∗
Re

{
Φ̂l∗ (xC) P2

2 (0) exp
[
i (2ϕC − l∗n∗t)

]}
,

(96)

where rC ≡ (rC = xCR, θC = π/2, ϕC), for xC > 1, is the position
of C in the equatorial plane of A, which is also the plane of
the orbit, and where the index l∗ is associated with the Fourier
expansion of the orbital motion of C.

From now on, we choose to follow the systematic method
developed in MLP09 to derive the expression of R as a function
of the Keplerian elements of B and C. In this work devoted to the

Fig. 4. The two regimes of turbulent dissipation (Eq. (87)). As long
as the local convective turn-over time remains shorter than the tidal
period (tconv < Ptide), the turbulent viscosity νt (in black dashed line)
is independent of the tidal frequency, and the inverse quality factor
k2/Q = |ΦII/U | (in red continuous line), given by Eq. (94), varies pro-
portionally to the tidal frequency σl (so does also the tidal lag angle).
When tconv > Ptide, νt varies proportionally to the tidal period, whereas
k2/Q = |ΦII/U | no longer depends on the tidal frequency. We note that
νt and k2/Q have been scaled by the value they take respectively for
tconv/Ptide → 0 and +∞.

Fig. 5. Here, we illustrate the set-up of the perturbing function method.
The primary A is deformed because of the tides exerted by the perturber
B. Because of A’s internal friction processes, the tidal bulge is shifted
from the line of centers with the tidal angle δl given in Eq. (94) for a
given l Fourier component of the tidal potential. The Keplerian elements
of B’s orbit are a, e, and M. Next, a third body C, which orbits around A
with a mean motion n∗, is introduced, and the variations in the Keplerian
elements of its orbit (a∗, e∗,M∗) are derived. After using Lagrange’s
equation (Eqs. (108), (109)), we finally assume that the orbiter and the
perturber are the same (i.e. C=B).

study of the tidal dynamics of extended bodies, the perturbing
function is derived for components X having an external gravific
potential

ΦX (r, t) = G
∞∑

sX=0

sX∑

mX=−sX

MsX,mX

YmX
sX

(
θ̃X, ϕ̃X

)

r̃ sX+1
X

, (97)

where
(
r̃X, θ̃X, ϕ̃X

)
are the spherical coordinates attached to their

equatorial planes. We introduce the gravitational moments of X

MsX,mX =
4π

2sX + 1

∫

VX

r̃ sX
X YmX

sX

(
θ̃X, ϕ̃X

)
ρXdVX, (98)
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equations are converted into a large algebraic system byGalerkin
projection onto normalized associated Legendre polynomials
(i.e., spherical harmonics) in ! and Chebyshev collocation in r.
The linear system is solved by a standard method for block
tridiagonal matrices, and the total viscous dissipation rate is cal-
culated. We adopt stress-free impermeable boundary conditions
on the dynamical tide at the upper and lower limits of the convec-
tive zone, as explained in Paper I.

2.3. Hough Waves in the Radiative Zone

We determine algebraically the excitation of Hough waves in
the radiative zone as in Paper I. They are excited at the interface
between the radiative and convective zones, partly by tidal forc-
ing in that region and partly by the pressure of the inertial waves
acting at the interface. Following Goodman & Dickson (1998),
the model assumes that N 2 vanishes in the convective zone and
increases initially linearly with distance into the radiative zone.
We assume that the waves are not reflected coherently from the
center of the star and calculate the resulting energy flux. This is
converted into a dissipation rate as described in Paper I. The be-
havior of waves near the center of the star in the limit j!̂j3 j!j
is discussed in the Appendix, where, in a slight refinement of
the calculation ofGoodman&Dickson (1998),we estimate the con-
ditions under which the waves become nonlinear.

3. RESULTS

3.1. Inertial Waves

In the left half of Figure 3, we plot, as a function of the tidal
frequency, the value ofQ0 resulting from the viscous dissipation
of inertial waves in the convective zone of the Sun with a spin
period of 10 days. Only the most important azimuthal wave-
number,m = 2, is considered. Also shown for comparison is the
viscous dissipation rate of the irrotational disturbance generated
in the convective zone when the Coriolis force is omitted. For
frequencies j!̂j < 2j!j the dissipation is greatly enhanced by the

excitation of inertial waves, but outside this range the Coriolis
force has little net effect.
Where the dissipation rate is significantly enhanced, it is rel-

atively insensitive to the viscosity, as found in Paper I. Elsewhere
the dissipation rate is directly proportional to the viscosity. The
value of Q0 obtained when the Coriolis force is omitted is larger
than that found by Terquem et al. (1998). This is partly because
of the contribution of g-mode resonances to their average value,
but mainly because their viscosity is larger than ours by a factor
of approximately 4"2.
The numerical convergence of these results was verified by

repeating the calculation with double the resolution in each di-
rection. It was found adequate in most cases to truncate the
Legendre and Chebyshev polynomial bases at an order of 100.

3.2. Hough Waves

Also shown in Figure 3 is the same information for Hough
waves excited at the interface between the radiative and con-
vective zones. Inclusion of the Coriolis force can either increase
or decrease the dissipation rate.
When the Coriolis force is neglected, our results should agree

with those of Goodman&Dickson (1998).We find their numer-
ical parameter #c to equal !1.19 rather than !0.64, which we
verified by numerically integrating their equation (3). Altogether,
we findQ0 " 3.9 ; 108[Ptide/(10 days)]

8/3 when spin is neglected.
We also obtain their equation (15) but with (M1 þM2)/M1 raised
to the power!5/3 instead ofþ11/6. This discrepancy suggests
that they may have overestimated the circularization rate by a
factor of 27/2.

3.3. Higher Tidal Frequencies

In Figure 4, we plot similar results over a wider range of tidal
frequencies. As expected, the Coriolis force is unimportant when
j!̂j3 j!j. As found by Goodman & Dickson (1998), Hough
waves (or gravity waves, in this regime) provide efficient tidal

Fig. 3.—Dissipation rate, parameterized as a value of Q 0, as a function of tidal frequency. These results refer to tidal forcing by the l = m = 2 solid harmonic in a
model of the Sun with a spin period of 10 days. Left, Q0 from the viscous dissipation of inertial waves in the convective zone; right, Q0 from the excitation of Hough
waves in the radiative zone. The dashed lines show the effect of omitting the Coriolis force. In this figure only, the dotted lines show the result of artificially
increasing the effective viscosity by a factor of 10.
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A&A 589, A22 (2016)

Fig. 6. Left: meridional cut of the normalized kinetic energy of an axisymmetric D mode with eigenfrequency !p ⇡ 1.15 obtained with E =
5 ⇥ 10�8, the Sun’s aspect ratio ⌘ = 0.71, and conical di↵erential rotation " = 0.3. The attractor of characteristics for these parameters is
overplotted by the white curve. Right: scaling of the damping rate with respect to the Ekman number E. The dashed line is proportional to E

1/3.

with respect to the equatorial plane, which explains why our re-
sults are only shown for positive values of z, but anti-symmetry
is also possible.

4.2. Axisymmetric and non-axisymmetric D modes
with no corotation layer

In this section we present our numerical results for a few repre-
sentative D modes with a background conical rotation profile and
Ekman numbers between 10�7 and 10�8, and we compare the
structural properties of the shear layers with the inviscid analy-
sis detailed in Sect. 3. We note that in the rest of this paper we
always show the kinetic energy distribution of the computed ve-
locity fields, but that the viscous dissipation looks qualitatively
very similar (e.g. Fig. 13 in Baruteau & Rieutord 2013).

Figure 6 displays the result of one of our numerical calcula-
tions for an axisymmetric (m = 0) D mode with eigenfrequency
!p ⇡ 0.91 obtained in a spherical shell of solar aspect ratio
⌘ = 0.71 with solar-like conical di↵erential rotation (" = 0.30).
The left panel shows the spatial distribution of the mode’s ki-
netic energy in a meridional quarter-plane. The amplitude of the
mode reaches its maximum near the rotation axis which is a fea-
ture shared by inertial modes in a uniformly rotating fluid shell.
This has been demonstrated in detail in Appendix A of Rieutord
& Valdettaro (1997) who showed that the kinetic energy along
characteristic trajectories grows as s

�1/2 when s! 0. The struc-
ture of this specific mode mostly consists of a shear layer fol-
lowing a short-period attractor formed by slightly curved lines,
as expected in the case of di↵erential rotation (see Sect. 3). This
attractor is overplotted with a thick white curve, which is the
prediction for the propagation of characteristics under the short-
wavelength approximation. The patterns formed by the attractor
and by the shear layers of the viscous mode are in very good
agreement. The mode shown in Fig. 6 was extracted from a se-
quence of calculations in which we followed a particular mode
while progressively decreasing the Ekman number from 10�6 to
10�9. The damping rate of this mode is displayed as a func-
tion of E in the right panel of Fig. 6 where the dashed line
clearly shows that it is proportional to E

1/3, which is the scaling

that is expected in the asymptotic regime for solid-body rotation
(Rieutord & Valdettaro 1997), meaning that this kind of D mode
is not deeply a↵ected by di↵erential rotation.

We show in Fig. 7 a qualitatively similar axisymmetric D
mode of eigenfrequency !p ⇡ 1.35 that was obtained with the
same aspect ratio but slightly lower Ekman number E = 10�8

and anti-solar di↵erential rotation " = �0.25. This time the am-
plitude of the mode still reaches its maximum at the rotation axis
but is also quite large near the inner critical latitude (where the
characteristics are tangent to the inner core), which is reminis-
cent of the solid-body rotation case where shear layers are some-
times emitted at the critical latitude. The right panel of Fig. 7 de-
picts the spectral content of u and w for this mode: the top panel
shows the maximum Chebyshev coe�cients Ck as a function of
the Chebyshev order k, taking the highest value among all the
spherical harmonics coe�cients for a given k; similarly, the bot-
tom panel shows the maximum spherical harmonics coe�cients
Cl as a function of the spherical harmonic degree: for a given l,
we take the highest value among all the Chebyshev coe�cients.
Therefore, we are certain that numerical convergence is achieved
for this mode.

Finally, the axisymmetric mode of frequency !p ⇡ 1.66 pre-
sented in the left panel of Fig. 8 displays a shear layer that fol-
lows an attractor of characteristics that exists for arbitrarily small
values of the aspect ratio ⌘. This means that in conical di↵eren-
tial rotation, attractors of characteristics may exist independently
of the existence of an inner core, which was also found for cylin-
drical and shellular di↵erential rotation profiles by Baruteau &
Rieutord (2013). We checked that this mode exists for arbitrar-
ily small cores, which contrasts with the fact that inertial modes
in a full sphere are regular in the case of solid-body rotation
(Greenspan 1968; Zhang et al. 2001). Our result shows that this
is probably no longer the case when di↵erential rotation is taken
into account. The case where characteristics do not converge to-
wards any limit cycle is shown in the right-panel of Fig. 8, which
displays a mode of frequency !p ⇡ 1.23 with ⌘ = 0.71 and
" = �0.25. This set of parameters corresponds to the open square
in Fig. 4 for which ⇤ ⇡ 0. As expected, the shear layer patterns
visible here follow the propagation of characteristics so that the

A22, page 10 of 17
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equations are converted into a large algebraic system byGalerkin
projection onto normalized associated Legendre polynomials
(i.e., spherical harmonics) in ! and Chebyshev collocation in r.
The linear system is solved by a standard method for block
tridiagonal matrices, and the total viscous dissipation rate is cal-
culated. We adopt stress-free impermeable boundary conditions
on the dynamical tide at the upper and lower limits of the convec-
tive zone, as explained in Paper I.

2.3. Hough Waves in the Radiative Zone

We determine algebraically the excitation of Hough waves in
the radiative zone as in Paper I. They are excited at the interface
between the radiative and convective zones, partly by tidal forc-
ing in that region and partly by the pressure of the inertial waves
acting at the interface. Following Goodman & Dickson (1998),
the model assumes that N 2 vanishes in the convective zone and
increases initially linearly with distance into the radiative zone.
We assume that the waves are not reflected coherently from the
center of the star and calculate the resulting energy flux. This is
converted into a dissipation rate as described in Paper I. The be-
havior of waves near the center of the star in the limit j!̂j3 j!j
is discussed in the Appendix, where, in a slight refinement of
the calculation ofGoodman&Dickson (1998),we estimate the con-
ditions under which the waves become nonlinear.

3. RESULTS

3.1. Inertial Waves

In the left half of Figure 3, we plot, as a function of the tidal
frequency, the value ofQ0 resulting from the viscous dissipation
of inertial waves in the convective zone of the Sun with a spin
period of 10 days. Only the most important azimuthal wave-
number,m = 2, is considered. Also shown for comparison is the
viscous dissipation rate of the irrotational disturbance generated
in the convective zone when the Coriolis force is omitted. For
frequencies j!̂j < 2j!j the dissipation is greatly enhanced by the

excitation of inertial waves, but outside this range the Coriolis
force has little net effect.
Where the dissipation rate is significantly enhanced, it is rel-

atively insensitive to the viscosity, as found in Paper I. Elsewhere
the dissipation rate is directly proportional to the viscosity. The
value of Q0 obtained when the Coriolis force is omitted is larger
than that found by Terquem et al. (1998). This is partly because
of the contribution of g-mode resonances to their average value,
but mainly because their viscosity is larger than ours by a factor
of approximately 4"2.
The numerical convergence of these results was verified by

repeating the calculation with double the resolution in each di-
rection. It was found adequate in most cases to truncate the
Legendre and Chebyshev polynomial bases at an order of 100.

3.2. Hough Waves

Also shown in Figure 3 is the same information for Hough
waves excited at the interface between the radiative and con-
vective zones. Inclusion of the Coriolis force can either increase
or decrease the dissipation rate.
When the Coriolis force is neglected, our results should agree

with those of Goodman&Dickson (1998).We find their numer-
ical parameter #c to equal !1.19 rather than !0.64, which we
verified by numerically integrating their equation (3). Altogether,
we findQ0 " 3.9 ; 108[Ptide/(10 days)]

8/3 when spin is neglected.
We also obtain their equation (15) but with (M1 þM2)/M1 raised
to the power!5/3 instead ofþ11/6. This discrepancy suggests
that they may have overestimated the circularization rate by a
factor of 27/2.

3.3. Higher Tidal Frequencies

In Figure 4, we plot similar results over a wider range of tidal
frequencies. As expected, the Coriolis force is unimportant when
j!̂j3 j!j. As found by Goodman & Dickson (1998), Hough
waves (or gravity waves, in this regime) provide efficient tidal

Fig. 3.—Dissipation rate, parameterized as a value of Q 0, as a function of tidal frequency. These results refer to tidal forcing by the l = m = 2 solid harmonic in a
model of the Sun with a spin period of 10 days. Left, Q0 from the viscous dissipation of inertial waves in the convective zone; right, Q0 from the excitation of Hough
waves in the radiative zone. The dashed lines show the effect of omitting the Coriolis force. In this figure only, the dotted lines show the result of artificially
increasing the effective viscosity by a factor of 10.
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and spin period 10 days. Although the details are different, the
qualitative behavior and the range of values of Q0 obtained are
similar to the case of the Sun.

3.6. Summary

In the frequency range j!̂j < 2j!j, tidal dissipation in the
convective zones of solar-type stars is substantially enhanced
through the excitation of inertial waves when the full Coriolis
force is included. HereQ 0 can be decreased by up to 4 orders of
magnitude and has a complicated dependence on tidal frequency.
TypicallyQ 0 / !!2 for a fixed ratio !̂/!. Values as small as106

can be achieved if the star spins more rapidly than the Sun.
If the Hough waves excited at the interface between the ra-

diative and convective zones do not reflect coherently from the
center of the star as a result of their nonlinearity, they provide
another means of dissipation at all frequencies. The resulting

value of Q0 scales generally with j!̂j!8/3, although this is mod-
ified, especially in the range j!̂j < 2j!j, by the inclusion of the
Coriolis force. Values as small as 106 can be achieved if the tidal
period is as short as 1 day. The estimates in the Appendix sug-
gest that in the case of the present Sun, Hough waves become
nonlinear in eccentric binaries but probably not in the hosts of
hot Jupiters. Nonlinearity is less likely in stars that are younger
or less massive than the Sun but more likely in older stars.

4. COMPARISON WITH OBSERVED SYSTEMS

4.1. Tidally Induced Orbital Migration

4.1.1. Close-in Gas Giant Planets around G Dwarfs

One immediate application of the present analysis is to the
orbital migration of close-in extrasolar planets. In his study of
OGLE-TR 56b, Sasselov (2003) computed the orbital decay

Fig. 6.—Same as Fig. 3, but for a spin period of 3 days. Note the different vertical scale.

Fig. 7.—Same as Fig. 3, but for a star of mass 0.5 M" and age 5 Gyr.
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A&A proofs: manuscript no. aanda

Fig. 2. Top-left: Evolution of the stellar radius R? of stars from 0.3 to 1.4 M� as a function of time. Top-right: Surface angular velocity (scaled to
the present Sun angular velocity ⌦� = 2.87 ⇥ 10�6s�1) evolution for the di↵erent stellar masses. Bottom-left: Evolution of the radius aspect ratio
↵ = Rc/R? of stars from 0.3 to 1.4 M� as a function of time. Bottom-right: Evolution of the mass aspect ratio � = Mc/M? of stars from 0.3 and
1.4 M� as a function of time. The symbols represent: the first step in each model (triangle), the ZAMS (square), and the TAMS (cross). Table 1
summarize at which evolutionary step the models of this work stop.

In the case of a coplanar star-planet system in which the orbit
of the planet is circular, the frequency-averaged tidal dissipation
(Ogilvie 2013; Mathis 2015) is given by:
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k2
2 is the Love number of degree 2 corresponding to the

quadrupolar mode (km
l , with l = 2 and m = 2 the components

of the time-dependent tidal potential proportional to the spheri-
cal harmonic Ym

l ) that gives the ratio between the perturbation of

the gravitational potential induced by the presence of the plan-
etary companion and the tidal potential evaluated at the stellar
surface. Its imaginary component Im

h
k2

2(!)
i

is a direct estima-
tion of the tidal dissipation. The interest of this formalism is that
it is possible to decompose Eq. 1 into two parts: the factor ✏2 on
the one hand, and the part of Eq. 1 that is a unique function of
↵ and � on the other hand. The first part takes into account the
rotation rate of the star (via ✏) and the second part only takes
into account the dependence on the internal stellar structure (via
the structural parameters ↵ and �). As in Mathis (2015), we can
therefore express the frequency-averaged dissipation at a fixed
rotation:

< D >⌦!= ✏�2 < D >!= ✏�2 < Im
h
k2

2(!)
i
>!, (3)

that only depends on ↵ and �. We can also define a second
frequency-averaged dissipation using the critical angular veloc-
ity of the Sun ⌦�c instead of that of the star:
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< D >⌦! , (4)
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α = Rc/R⋆
β = Mc/M⋆

F. Gallet et al.: Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets

Fig. 5. Upper panels: Equivalent modified tidal quality factor Q0 = 3/(2 < D̂ >!) as a function of time (left) and e↵ective temperature (right).
Lower panels: Equivalent structural modified quality factor Q0s = 3/(2 < D̂ >⌦!) as a function of time (left) and e↵ective temperature (right).

The evolution of the normalized tidal dissipation follows the
evolution of the internal structure of the star. In the lower left
panel of Fig. 4 we retrieve the di↵erent regimes followed by the
frequency averaged tidal dissipation intensity at fixed rotation
as described in § 3.1. This structural modulation is also found,
but inverted, in the evolution of the equivalent structural quality
factor as a function of time (see lower left panel of Fig. 5). The
main e↵ects of relaxing the normalization on the rotation rate are
(i) that the tidal dissipation is lower, on the PMS, by about two
orders of magnitude toward lower intensity as ✏ ⌧ 1, and (ii) that
the behavior of the dissipation, on the MS phase, is drastically
changed (see Fig. 4 and 5) because of stellar spin-down driven
by magnetized winds.

Even if the rotation rate is evolving during the PMS phase
(see upper right panel of Fig. 2) it has no impact on the behav-
ior of the tidal dissipation (or equivalent quality factor) since
the rotation itself is entirely controlled by the stellar contraction
(i.e. by the internal structure). During the Hayashi phase, as the
star contracts and its core develops, the tidal dissipation (equiva-
lent quality factor) first increases (decreases) at almost constant
e↵ective temperature (see right panels of Figs. 4 and 5). Then
on the Henyey phase, the dissipation (equivalent quality factor)
reaches a plateau while the e↵ective temperature slightly de-

creases. Just before the ZAMS, the dissipation (equivalent qual-
ity factor) decreases (increases) as the star slightly expands.

During the MS phase, and as pointed out above, both the
mass and radius aspect ratios remain more or less constant. At
that point, the internal structure stops to control the evolution of
the tidal dissipation (equivalent quality factor). From the ZAMS
and up to the TAMS, the tidal dissipation (equivalent quality fac-
tor) is controlled by the evolution of the surface angular veloc-
ity and thus by the extraction of angular momentum (see Sect.
2.2). As a consequence, the tidal dissipation (equivalent quality
factor) continuously decreases (increases) towards the TAMS.
Note the stall in this evolution that is due to the transition be-
tween saturated and unsaturated wind regime (see Matt et al.
2015, and references therein and the gray line in the upper left
panel of Fig. 4). Indeed, this stall in almost all rotational tracks
is due to a change in saturation regime induced by the saturation
of the magnetic field that observationally appears around Ro =
0.1 (Saar 1996, 2001; Reiners & Mohanty 2012). The e↵ect of
this magnetic saturation is to reduce the e�ciency of the braking
law (see Kawaler 1988). During that phase, while the temper-
ature decreases, the tidal dissipation (equivalent quality factor)
linearly in logarithmic scales decreases (increases) at quasi con-
stant e↵ective temperature.
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Fig. 5. Upper panels: Equivalent modified tidal quality factor Q0 = 3/(2 < D̂ >!) as a function of time (left) and e↵ective temperature (right).
Lower panels: Equivalent structural modified quality factor Q0s = 3/(2 < D̂ >⌦!) as a function of time (left) and e↵ective temperature (right).

The evolution of the normalized tidal dissipation follows the
evolution of the internal structure of the star. In the lower left
panel of Fig. 4 we retrieve the di↵erent regimes followed by the
frequency averaged tidal dissipation intensity at fixed rotation
as described in § 3.1. This structural modulation is also found,
but inverted, in the evolution of the equivalent structural quality
factor as a function of time (see lower left panel of Fig. 5). The
main e↵ects of relaxing the normalization on the rotation rate are
(i) that the tidal dissipation is lower, on the PMS, by about two
orders of magnitude toward lower intensity as ✏ ⌧ 1, and (ii) that
the behavior of the dissipation, on the MS phase, is drastically
changed (see Fig. 4 and 5) because of stellar spin-down driven
by magnetized winds.

Even if the rotation rate is evolving during the PMS phase
(see upper right panel of Fig. 2) it has no impact on the behav-
ior of the tidal dissipation (or equivalent quality factor) since
the rotation itself is entirely controlled by the stellar contraction
(i.e. by the internal structure). During the Hayashi phase, as the
star contracts and its core develops, the tidal dissipation (equiva-
lent quality factor) first increases (decreases) at almost constant
e↵ective temperature (see right panels of Figs. 4 and 5). Then
on the Henyey phase, the dissipation (equivalent quality factor)
reaches a plateau while the e↵ective temperature slightly de-

creases. Just before the ZAMS, the dissipation (equivalent qual-
ity factor) decreases (increases) as the star slightly expands.

During the MS phase, and as pointed out above, both the
mass and radius aspect ratios remain more or less constant. At
that point, the internal structure stops to control the evolution of
the tidal dissipation (equivalent quality factor). From the ZAMS
and up to the TAMS, the tidal dissipation (equivalent quality fac-
tor) is controlled by the evolution of the surface angular veloc-
ity and thus by the extraction of angular momentum (see Sect.
2.2). As a consequence, the tidal dissipation (equivalent quality
factor) continuously decreases (increases) towards the TAMS.
Note the stall in this evolution that is due to the transition be-
tween saturated and unsaturated wind regime (see Matt et al.
2015, and references therein and the gray line in the upper left
panel of Fig. 4). Indeed, this stall in almost all rotational tracks
is due to a change in saturation regime induced by the saturation
of the magnetic field that observationally appears around Ro =
0.1 (Saar 1996, 2001; Reiners & Mohanty 2012). The e↵ect of
this magnetic saturation is to reduce the e�ciency of the braking
law (see Kawaler 1988). During that phase, while the temper-
ature decreases, the tidal dissipation (equivalent quality factor)
linearly in logarithmic scales decreases (increases) at quasi con-
stant e↵ective temperature.
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Imk2 = f(α, β)g(Ω)

Average value of dissipation 
depends on structural 

parameters and rotation Only structural part ( )Ω = cst
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Stellar tide: dynamical tide
Tidal response Orbital/rotational evolution

➡ Shapes the architecture of the young 
planetary systems 

Effect of tidal inertial waves in the convective 
envelope of Sun-like stars: 
Bolmont & Mathis 2016, Gallet+17, 
Benbakoura+19, Ahuir+21a… 

Effect of tidal gravity waves in the radiative 
zone of Sun-like stars: 
Ahuir+21b, Lazovik+21… 
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Stellar tide: dynamical tide
Tidal response Orbital/rotational evolution

➡ Shapes the architecture of the young 
planetary systems 

Effect of tidal inertial waves in the convective 
envelope of Sun-like stars: 
Bolmont & Mathis 2016, Gallet+17, 
Benbakoura+19, Ahuir+21a… 

Effect of tidal gravity waves in the radiative 
zone of Sun-like stars: 
Ahuir+21b, Lazovik+21… 

➡ Shapes the architecture of the “old” 
planetary systems 

6 Y. A. Lazovik

Figure 3. Mass–density diagram. The planetary mass is given in Earth
masses. Green points represent the initial sample taken from https:
//exoplanetarchive.ipac.caltech.edu/. Red points with error bars
represent bins. Black solid line corresponds to the best fit, expressed by
eq.(24).

than the mean density of the Sun (d� = 1.4 g cm�3), thus most of
the mergers do not produce bright transients.

3 ORBITAL EVOLUTION

In this section, we investigate the e�ect of various factors on the
orbital evolution of hot Jupiters. We start with varying the parameters
associated with the planets and then move on to stellar properties.

3.1 Impact of the initial semi-major axis

Fig. 4 illustrates the secular evolution of a star-planet system com-
posed of a solar-mass star with a median initial rotation and a hot
Jupiter with "pl = 3 "J. We consider five initial orbital periods:
%orb,init = 2, 2.5, 3, 4, and 5 days. Colored solid lines represent the
planetary migration, while colored dashed and dotted lines corre-
spond to the dynamics of the corotation radius and the = = 2⌦⇤
limit, respectively. In all five cases, the planet is initially located in
the region of inward migration. Three of the most distant planets
are able to excite the inertial waves inside the host star. As the star
spins up, these planets cross the corotation radius, reversing migra-
tion from inward to outward. Hot Jupiters with %orb,init = 2 and 2.5
days, in turn, are initially located in the region of slow migration
where only equilibrium tide operates. Subsequently, they cross the
= = 2⌦⇤ limit, significantly enhancing the migration rates. However,
only the planet with %orb,init = 2 days is located close enough to be
captured by the = = 2⌦⇤ limit. In all five cases, the planet gets into
the equilibrium tide region after the star has lost most of its angular
momentum due to the wind braking. Unlike the models from Bol-
mont et al. (2017), our stellar evolutionary tracks do not reveal a rapid
decrease of the stellar radius at 20 Myr. Besides, the equilibrium tide
dissipation computed using the prescriptions from B20 is too weak
to result in the engulfment of the closest hot Jupiter within the first
billion years, in contrast to Fig. 8 of Bolmont et al. (2017).

The initiation of gravity wave dissipation shown by the black
circles serves as a turnaround point in the context of the orbital
evolution for all hot Jupiters, except for the furthest one, eventually
leading to the coalescence with the host star. One can see that the

Figure 4. Secular evolution of hot Jupiters with "pl = 3 "J around a
solar-mass star with %rot,init = 5.5 days and [Fe/H] = +0.2 dex. Black solid
and dashed lines indicate the corotation radius and the = = 2⌦⇤ limit of an
isolated star, respectively. Gray dotted line represents stellar surface. Colored
solid lines correspond to the orbital period evolution of the planets. From top
to bottom: %orb,init = 5, 4, 3, 2.5, 2 days. Colored dotted and dashed lines
represent the corotation radius and = = 2⌦⇤ limit of a star in the presence of
a corresponding planet, respectively. Black circles indicate the starting time
of gravity wave dissipation, black crosses restrict the phase of the orbital
evolution when hot Jupiter is captured on the = = 2⌦⇤ limit.

wave-breaking criterion becomes satisfied at almost the same age
for all star-planet systems with the same planetary mass. This is due
to the robust dependence of �2

nl on ⇠ expressed by eq.(21). The
quantity ⇠, which characterizes the strength of the stratification at
the center of a star, increases throughout stellar evolution on the MS.
The latter is shown in Fig. 10 of B20. Five billion years of gravity
wave dissipation is enough for a planet represented by red color to
merge with the star. Hot Jupiters shown in green and magenta require
roughly a billion years to do so. The planet represented by blue color
falls onto the star within the first thousand years since the beginning
of gravity wave breaking.

3.2 Impact of planetary mass

Fig. 5 demonstrates the e�ect of planetary mass on the secular evolu-
tion of a star-planet system formed by a star with the same properties
as in subsection 3.1. The left panel represents the population of hot
Jupiters with "pl = 1 "J. As opposed to the case of massive planets
with "pl = 7 "J, shown on the right, the inertial waves do not in-
duce rapid migration. Less massive hot Jupiters are not captured on
the = = 2⌦⇤ limit and undergo slow tidal evolution. As a result, they
are located close to the initial orbit at the beginning of gravity wave
dissipation.

On the contrary, the right panel of Fig. 5 indicates that inertial
waves strongly influence the dynamics of close planets with "pl =
7 "J. The planets shown in blue and magenta attach to the = = 2⌦⇤
limit and migrate e�ectively before zero-age main sequence (ZAMS).
More massive hot Jupiters are able to spin up the host star to a higher
angular velocity. Consequently, these planets leave the = = 2⌦⇤ limit
closer to the stellar surface, leading to early engulfment without the
impact of gravity waves. Note that initially the closest planet merges
with the host star later than the second closest hot Jupiter. Such change
of order happens because the distant planet is able to deposit more
angular momentum into the stellar spin, forcing the = = 2⌦⇤ limit

MNRAS 000, 1–16 (2021)

Dyn Tides  
(Inertial waves)

Dyn Tides  
(Gravity waves)

Equilibrium Tide

[Lazovik+21]

Corotation
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(see the bottom panel of Fig. 8). Hence, in the case of super-
Earths, the magnetic torque (see the blue curves in Fig. 8) is
more likely to drive the evolution of the star–planet system. By
taking magnetic interactions into account, a typical variation of
Mp (from 10�2 to 1 MJup) leads to a delay of around 100 Myr
in the crossing of the co-rotation radius. Thus, a change of two
orders of magnitude in planetary mass has a similar effect on
secular evolution, manifesting as an increase in the initial semi-
major axis by a factor of two and an increase in the initial stellar
rotation period by a factor of five.

One can assess the robustness of the previous results by con-
sidering other hypotheses for the planetary magnetic field. For
instance, one can assume that the magnetic field of the planet
we consider behaves in the same way as what is observed in the
Solar System. Then, according to Shkolnik & Llama (2017), in
the case of close-in planets with a synchronous rotation and a
dipolar magnetosphere, we obtain

Bp /
 

Mp

Porb

!1.21

R�3
p . (34)

In such a scenario, according to the Chen & Kipping (2017)
Mp � Rp relationships (Eq. (12)), Bp increases for an increasing
planetary mass if Mp < 2.0 M� and Mp � 0.4 MJup. This leads
to the following mass dependencies for the magnetic torque:

�mag /

8>>>><
>>>>:

M0.77
p , Mp < 2.0 M� (6.29 ⇥ 10�3 MJup)

M0.87
p , 2.0 M�  Mp < 0.4 MJup

M0.66
p , Mp � 0.4 MJup.

(35)

This leads to a stronger mass dependency of the magnetic torque
for jovian planets as well as super-Earths and a weaker Mp-
dependency in the case of neptunian planets. However, as in the
constant surface magnetic field scenario, the tidal torque is more
sensitive to planetary mass than the SPMI torque. Hence, we
find this effect to be negligible and choose to consider a con-
stant planetary field in the remainder of this work for the sake of
simplicity.

Let us now assess the sensitivity of our results to the ampli-
tude of the planetary field. In the case of a magnetized planet, as
�mag / R2

pB0.56
p , a higher planetary magnetic field leads to more

efficient star–planet interactions and therefore to a more signif-
icant migration. Such a trend is illustrated in Fig. 9 by varying
the surface magnetic field of the planet in our reference case. In
this configuration, a factor of ten in the magnetic field leads to
an increase in the dipolar torque by a factor of 3.6, which has a
significant influence on the semi-major axis of the planet during
the main sequence. Such a variation plays a critical role if the
planet is likely to be engulfed. However, a change of one order of
magnitude in the planetary magnetic field only leads to a delay in
exceeding the co-rotation radius of the order of 10 Myr, making
Bp the least sensitive free parameter of our model.

When a magnetic cavity is formed around the planet, as the
geometrical cross-section intervenes in the magnetic torque, the
latter is independent of Bp. The magnetic torque then scales as
�mag / R2

p. From the Chen & Kipping (2017) relations, the mag-
netic torque is therefore less sensitive to the planetary mass than
its tidal counterpart in the magnetic cavity regime, but is always
negligible compared to the dynamical tide because it decreases
by one order of magnitude.

Even though planetary magnetism can affect the secular
evolution of the star–planet system significantly, the magnetic
field strength of extrasolar planets remains poorly constrained.

Fig. 9. Secular evolution of a star–planet system formed by a fast-
rotating K star (M? = 0.8 M�, Prot,ini = 1.4 days) orbited by a mag-
netized hot Neptune (Mp = 0.1 MJup, aini = 0.035 AU) for two different
values of the planetary magnetic field: Bp = {1, 10} G (in dashed and
solid line, respectively). The thick curves correspond to our reference
case discussed in Sect. 3.1.1. Top panel: semi-major axis (solid lines)
and co-rotation radius of the star (black dashed lines). Wind braking +
tides are shown in shades of red; wind braking + tides + magnetic
effects are shown in shades of blue. The gray bands on the left cor-
respond to the disk-locking phase. Bottom panel: tidal (shades of red)
and magnetic (shades of blue) torques in the case of evolution with all
the combined interactions. The white square corresponds to the ZAMS
and the red circles to the crossing of the dynamical tide excitation limit
by the planet.

For instance, tidal effects may heat the planetary core, hence
affecting its dynamics. Those processes may alter the planetary
dynamo in a manner that is not yet fully understood. However,
we can gain initial insight into the possible values in various
ways. For instance, McIntyre et al. (2019) estimated the magnetic
moment of rocky planets from dynamo models, which leads to a
surface magnetic field of between 1.5⇥ 10�2 and 1.45 G, assum-
ing a dipolar topology. We can also rely on what is observed in
the Solar System to assess Bp. While the maximal field strength
in this system is observed in Jupiter with a value of around 4 G,
the Shkolnik & Llama (2017) scaling law applied to a super-
Jupiter of mass Mp = 10 MJup and an orbital period of 0.5 days
(situated near the Roche limit of a 1 M� star for example) leads to
a planetary magnetic field that can reach 10 G. Hence, we adopt
in the rest of this work two different values for the planetary
magnetic field: Bp = 1 G, and Bp = 10 G, the latter acting as an
upper bound compared to the values measured in the Solar Sys-
tem. Such values of Bp seem to be in agreement with the possible
detections of exoplanet radio emission (e.g., ⌧ Boötis b, we refer
the reader to Turner et al. 2021). However, one has to keep in
mind that it is possible for some planets to have an even stronger
magnetic field. Indeed, values as high as 28 G or even hundreds
of Gauss have been estimated for hot Jupiters using observed
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K star orbited by a magnetized hot Neptune [Ahuir+21]

Tide Mag
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Tidal interactions

‣ Why are tides important?

★ Tides, the easy way

★ Tides, the hard way…

‣ Some constraints brought by studying tides…

‣ A bit of theory
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Planetary tide: rocky planets/cores
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Andrade

Mercury is believed to have a massive molten core, whose
existence is revealed by the large amplitude of forced libration
detected via ground-based radar measurements (Margot
et al. 2007). The core should be nearly decoupled from the
solid mantle (i.e., it should have a low coefficient of friction) to
enable the increased libration. Unlike the TR1 planets,
however, Mercuryʼs orbital eccentricity is quite high, which
explains its permanent 3:2 spin–orbit resonance. Early attempts
to explain this state by using simplistic tidal models (such as
the constant-Q or constant-time-lag models) met considerable
difficulties, rendering low values for the probability of any
equilibrium state apart from synchronous rotation, the 1:1 spin–
orbit resonance (Correia & Laskar 2004). Noyelles et al. (2013)
demonstrated that these difficulties are resolved within a
physics-based—and, therefore, more realistic—description of
the rheological response. Based on a combined Maxwell–
Andrade rheology introduced on physical grounds by
Efroimsky (2012a, 2012b), the tidal response demonstrated a
pronounced frequency dependence. Armed with this model,
and employing physically reasonable ranges of the parameters’
values, Noyelles et al. (2013) demonstrated that the 3:2
resonance is indeed the most likely outcome of the tidal
evolution of a homogeneous rotator, and that the capture is a
very quick process (less than 20Myr). On the other hand, the
presence of a massive decoupled core made the higher
resonances, such as 5:2 or 2:1, more probable end states.
These results led the authors to the conclusion that, in all
likelihood, Mercury was captured in the 3:2 spin–orbit state
shortly after its accretion, i.e., well before it was heated up by
radioactivity. The authors also acknowledged the possibility
that Mercury might have been trapped in one of such high
resonances, before a massive impact during a period of
relatively low eccentricity drove it out of that state.

The Maxwell model has long been in use in the studies of
exoplanets and the solar-system bodies (e.g., Correia et al.
2014; Storch & Lai 2014). The parameters entering this model
—rigidity and viscosity—cannot be directly constrained by
observation. It is also difficult to estimate them theoretically,
because these parameters are sensitive to the presence of partial
melt, to the pressure, and even more so to the temperature. The

high temperatures and pressures required to emulate the
conditions of a deep mantle are hard to achieve in laboratory
measurements, and tidal manifestations remain the principal
method for the indirect estimation of these parameters.
Furthermore, the tidal response of terrestrial planets, satellites,
and small bodies turns out to be less sensitive to the rigidity and
much more sensitive to the viscosity (Efroimsky 2015).
Figure 3 shows the dimensionless tidal quality function,
k2/Q, plotted against the excitation frequency for two values
of the Maxwell time of the TR1-1 planet.1 For the shorter
Maxwell time (implying a lower viscosity value), the
dependence is almost linear, and the classic constant-time-lag
model turns out to be a good approximation. For somewhat
colder mantles of higher viscosity, the function is remarkably
nonlinear, and conclusions can be drawn only from numerical
simulations.

4. Self-regulation of Tidal Heating

As the partners tidally interact with one another over billions
of years, tides become an important factor of the dynamical
history of the system. The rate of tidal dissipation depends on a
number of orbital and planetary parameters, including the
eccentricity e, the masses of the star and the planet (M1 and M2),
the semimajor axis a, the planetʼs radius R, and its Maxwell time
τM. The dependences of the tidal evolution rate and of the
capture probabilities on these parameters are quite strong and
generally nonlinear, making the physical interpretation of
observations intrinsically uncertain. The approach we are using
here is to assume some of the parameters to be close to Earthʼs
benchmark values when available, and to consider a wide range
of values otherwise.
Figure 4 displays the Maxwell-time dependence of the

energy dissipation rate (i.e., of the power exerted by the tidal
friction) in the planet TR1-1, for a fixed orbital period
P 1.51orb = days. We used the formula for the tidal dissipation
rate derived by Efroimsky & Makarov (2014), which is a

Figure 3. Tidal quality ratio K=k2/Q for the planet TR1-1, as a function of the tidal excitation frequency, plotted for two values of the Maxwell time, τM=0.02 and
0.5 days.

1 The Maxwell time is the ratio of the mean shear viscosity of the mantle to its
mean shear rigidity modulus, τM=η/μ.
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Figure 2. Negative imaginary part of the complex quadrupole Love number, k2 sin ε2 = − Im[k̄2(χ )], as a function of the tidal frequency χ . The black, red, and
blue curves refer, respectively, to Iapetus, Mars, and the solid Earth. The cyan and green curves refer to the two hypothetical superearths described in Table 1. These
superearths have the same rheology as the solid Earth but have sizes R = 2 R⊕ and R = 4 R⊕. Each of these five objects is modeled with a homogeneous near-spherical
self-gravitating Andrade body with α = 0.2 and τA = τM = 1010 s. In the limit of vanishing tidal frequency χ , the factors k2 sin ε2 approach zero, which is natural
from the physical point of view. Indeed, an lmpq term in the expansion for tidal torque contains the factor kl(χlmpq ) sin εl (χlmpq ). On crossing the lmpq resonance,
where the frequency χlmpq goes through zero, the factor kl(χlmpq ) sin εl (χlmpq ) must vanish, so that the lmpq term of the torque could change its sign.

Table 1
Estimates of A

(static)
2 for Rigid Celestial Bodies

Radius Mean Density Mean Relaxed The Resulting
(R) (ρ) Shear Rigidity (µ(∞)) Estimate for A2

Iapetus 7.4 × 105 m 1.1 × 103 kg m−3 4.0 × 109 Pa 200

Mars 3.4 × 106 m 3.9 × 103 kg m−3 1.0 × 1011 Pa 19

Earth 6.4 × 106 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 2.2

A hypothetical super-Earth
with R = 2 R⊕ and the 4.5 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.55
same rheology as Earth

A hypothetical super-Earth
with R = 4 R⊕ and the 9.0 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.14
same rheology as Earth

Notes. The values of A
(static)
2 are calculated using Equation (58) and are rounded to the second figure.

6. TIDAL DISSIPATION VERSUS SEISMIC DISSIPATION IN THE ANELASTICITY-DOMINATED BAND

In this section, we shall address only the higher-frequency band of the spectrum, i.e., the range where anelasticity dominates
viscoelasticity and the Andrade model is applicable safely. Mind though that the Andrade model can also embrace the near-Maxwell
behavior, and thus can be applied to the low frequencies, provided we “tune” the dimensionless parameter ζ appropriately—see
Section 3.4 above.

6.1. Response of a Sample of Material

At frequencies higher than some threshold value χ0, dissipation in minerals is mainly due to anelasticity rather than to viscosity.15

Hence, at these frequencies ζ should be of order unity or smaller, as can be seen from Equation (33b). This entails two consequences.
First, the condition χ % 1/(ζ τM ), i.e., z % 1 is obeyed reliably, for which reason the first term dominates the denominator in
Equation (38). Second, either the condition z % 1 is stronger than z % ζ 1/(1−α) or the two conditions are about equivalent. Hence
the anelastic term dominates the numerator in Equation (38): z−α % z−1 ζ .

Altogether, over the said frequency range, Equation (38) simplifies to:

tan δ ≈ (χτA)−α sin
(α π

2

)
Γ(α + 1) = (χ ζ τM )−α sin

(α π

2

)
Γ(α + 1). (66)

15 For the solid Earth, this threshold is about 1 yr−1 (Karato & Spetzler 1990). Being temperature sensitive, the threshold may assume different values for other
terrestrial planets. Also mind that the transition is not sharp and can extend over a decade or more.
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Figure 3. Four different anelastic models discussed in this paper, and their
corresponding notation.

body is strength dominated, while for µ̃ ! 1 it behaves like a
gravitating fluid. Often the substitution

β = ρgRsec (9)

is made to emphasize this point by forming a gravitational
stiffness analogous to the material modulus µ. Since tides excite
a planet in shear (orthogonal tension and compression), for |µ|
we use the Shear modulus G (not the Bulk or Young’s modulus
K or E). Typical values of G are 90 GPa for (undamaged) rocky
material, and 4 GPa for icy material (Goldsby & Kohlstedt
2001). In comparison, the effective gravitational rigidity is β =
250 GPa for Earth and 8 GPa for Io.

A material may behave as any combination of springs
and dampers that model viscous creep and elastic rebound.
Mathematically, a spring damper model is represented by
forgoing a scalar modulus µ for a complex value M∗, whose
real and imaginary parts define the energy storage and energy
loss aspects of the system. These components, M1 and M2 are
computed from a model’s constitutive equation. Substituting the
complex form of the stiffness

µ(ω) = M∗(ω) = σ (ω)
ε(ω)

= M1(ω) + ıM2(ω) (10)

into Equation (8), then substituting this complex from of µ̃ into
Equation (7), we derive the complex form of k2 and extract the
imaginary component Im(k2) for use in Equation (6).

4.1. Anelastic Models

The four basic models and parameters for the rheologies
considered for this paper are shown in Figure 3. The Maxwell
body, commonly used because of its simplicity, considers mantle
rock as a spring-dashpot series, with an instantaneous elastic
response, followed by viscous yielding. It is ultimately fluid.

The Maxwell model is useful but incomplete (Ojakangas &
Stevenson 1989). As discussed by Zener (1941) and observed
in the laboratory (Post 1977; Smith & Carpenter 1987; Cooper
2002; Jackson et al. 2000), real polycrystalline materials exhibit
a wider range of relaxation mechanisms.

A parallel spring-dashpot pair is known as the Voigt–Kelvin
model. Here, viscous relaxation is ultimately limited by the
spring. While the Voigt–Kelvin model is instructive as a sub-
component of other models and has been applied to lunar tides
(Van Arsdale 1981), we ultimately find it poorly suited to short-
period cases.

A three parameter model, known as either the Standard
Anelastic Solid or Standard Linear Solid, has features of both

the Maxwell and Voigt–Kelvin primitives: instantaneous elastic
response, followed by strain limited relaxation. It will not take
a permanent set. All deformation is recovered when a load is
removed. Either of the two ways to arrange two springs and
one damper in a series–parallel combination are mathematically
equivalent (Nowick & Berry 1972).

A four parameter model, or Burgers body, allows the mod-
eling of transient molecular creep behavior in minerals. It can
exhibit transient creep, recovery, and take on a permanent set,
modeling a broad range of materials. The Burgers or SAS mod-
els may both be reduced to the Maxwell or Voigt–Kelvin models
through appropriate selection of parameters.

The Burgers body is useful in modeling the phenomenon of
grain-boundary slip. The Maxwell element within the Burg-
ers body represents classical diffusion creep, where non-
recoverable creep motion occurs through void migration inside
of grains. Grain boundary slip occurs on a shorter relaxation
timescale and is recoverable, as represented by the Voigt–Kelvin
element. Post-glacial rebound studies in particular have sug-
gested that the Burgers body is a more appropriate model of
the Earth than a Maxwell body (Sabadini et al. 1987; Faul &
Jackson 2005). As we apply them to exoplanet tidal models,
both the SAS and Burgers models reveal susceptibility modes
not found in a Maxwell approach. We note that as a method of
extrapolation, spring-dashpot models have the advantage of a
clear relationship to underlying defect microdynamics, but the
disadvantage of historically poor correlation with large complex
inhomogeneous systems such as Earth’s mantle.

We follow the notation of Nowick & Berry (1972), where
J’s denote compliances in Pa−1, and M’s denote stiffnesses
in Pa. Series springs are mainly expressed by stiffnesses and
parallel springs by compliances. For the SAS model, Ju is the
instantaneous compliance to an applied load, and δJ is the
additional compliance during creep, known as either the creep
defect or compliance defect.

Using the geometry and parameters of each model from
Figure 3, then solving for the overall stress σ and strain ε leads
to the following constitutive relations.

1. Maxwell:
Mσ + ησ̇ = Mηε̇. (11)

2. Voigt–Kelvin:

Jσ = ε + ηJ ε̇. (12)

3. SAS:
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σ̈ = ε̇ + ηAδJ ε̈. (14)

While a tidal distortion of a planet is best expressed as an
applied strain, solutions were also investigated for applied stress
problems. The main difference between these methods is that
the Maxwell and Voigt–Kelvin models switch behaviors. In a
Maxwell model, there is nothing to prevent infinite viscous work
under an applied stress, as no spring limits the dashpot’s travel.
Under an applied strain, work is inherently finite. The reverse is
true in a Voigt–Kelvin model, where rapid forced strain cycles
can drive the dashpot to approach infinite work. Mainly for this
reason, we find the Voigt–Kelvin model unsuited to tidal cases,
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a permanent set. All deformation is recovered when a load is
removed. Either of the two ways to arrange two springs and
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recoverable creep motion occurs through void migration inside
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not found in a Maxwell approach. We note that as a method of
extrapolation, spring-dashpot models have the advantage of a
clear relationship to underlying defect microdynamics, but the
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inhomogeneous systems such as Earth’s mantle.

We follow the notation of Nowick & Berry (1972), where
J’s denote compliances in Pa−1, and M’s denote stiffnesses
in Pa. Series springs are mainly expressed by stiffnesses and
parallel springs by compliances. For the SAS model, Ju is the
instantaneous compliance to an applied load, and δJ is the
additional compliance during creep, known as either the creep
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Figure 3, then solving for the overall stress σ and strain ε leads
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1. Maxwell:
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2. Voigt–Kelvin:
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While a tidal distortion of a planet is best expressed as an
applied strain, solutions were also investigated for applied stress
problems. The main difference between these methods is that
the Maxwell and Voigt–Kelvin models switch behaviors. In a
Maxwell model, there is nothing to prevent infinite viscous work
under an applied stress, as no spring limits the dashpot’s travel.
Under an applied strain, work is inherently finite. The reverse is
true in a Voigt–Kelvin model, where rapid forced strain cycles
can drive the dashpot to approach infinite work. Mainly for this
reason, we find the Voigt–Kelvin model unsuited to tidal cases,
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Figure 2. Negative imaginary part of the complex quadrupole Love number, k2 sin ε2 = − Im[k̄2(χ )], as a function of the tidal frequency χ . The black, red, and
blue curves refer, respectively, to Iapetus, Mars, and the solid Earth. The cyan and green curves refer to the two hypothetical superearths described in Table 1. These
superearths have the same rheology as the solid Earth but have sizes R = 2 R⊕ and R = 4 R⊕. Each of these five objects is modeled with a homogeneous near-spherical
self-gravitating Andrade body with α = 0.2 and τA = τM = 1010 s. In the limit of vanishing tidal frequency χ , the factors k2 sin ε2 approach zero, which is natural
from the physical point of view. Indeed, an lmpq term in the expansion for tidal torque contains the factor kl(χlmpq ) sin εl (χlmpq ). On crossing the lmpq resonance,
where the frequency χlmpq goes through zero, the factor kl(χlmpq ) sin εl (χlmpq ) must vanish, so that the lmpq term of the torque could change its sign.

Table 1
Estimates of A

(static)
2 for Rigid Celestial Bodies

Radius Mean Density Mean Relaxed The Resulting
(R) (ρ) Shear Rigidity (µ(∞)) Estimate for A2

Iapetus 7.4 × 105 m 1.1 × 103 kg m−3 4.0 × 109 Pa 200

Mars 3.4 × 106 m 3.9 × 103 kg m−3 1.0 × 1011 Pa 19

Earth 6.4 × 106 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 2.2

A hypothetical super-Earth
with R = 2 R⊕ and the 4.5 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.55
same rheology as Earth

A hypothetical super-Earth
with R = 4 R⊕ and the 9.0 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.14
same rheology as Earth

Notes. The values of A
(static)
2 are calculated using Equation (58) and are rounded to the second figure.

6. TIDAL DISSIPATION VERSUS SEISMIC DISSIPATION IN THE ANELASTICITY-DOMINATED BAND

In this section, we shall address only the higher-frequency band of the spectrum, i.e., the range where anelasticity dominates
viscoelasticity and the Andrade model is applicable safely. Mind though that the Andrade model can also embrace the near-Maxwell
behavior, and thus can be applied to the low frequencies, provided we “tune” the dimensionless parameter ζ appropriately—see
Section 3.4 above.

6.1. Response of a Sample of Material

At frequencies higher than some threshold value χ0, dissipation in minerals is mainly due to anelasticity rather than to viscosity.15

Hence, at these frequencies ζ should be of order unity or smaller, as can be seen from Equation (33b). This entails two consequences.
First, the condition χ % 1/(ζ τM ), i.e., z % 1 is obeyed reliably, for which reason the first term dominates the denominator in
Equation (38). Second, either the condition z % 1 is stronger than z % ζ 1/(1−α) or the two conditions are about equivalent. Hence
the anelastic term dominates the numerator in Equation (38): z−α % z−1 ζ .

Altogether, over the said frequency range, Equation (38) simplifies to:

tan δ ≈ (χτA)−α sin
(α π

2

)
Γ(α + 1) = (χ ζ τM )−α sin

(α π

2

)
Γ(α + 1). (66)

15 For the solid Earth, this threshold is about 1 yr−1 (Karato & Spetzler 1990). Being temperature sensitive, the threshold may assume different values for other
terrestrial planets. Also mind that the transition is not sharp and can extend over a decade or more.
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During the orbital evolution, Phobos undergoes 2:1 and 3:1 spin–
orbit resonances with Mars’s figure at a = 3.8RMars and a = 2.9RMars, 
respectively, where RMars is the mean radius of Mars, and a 1:1 reso-
nance with the Sun at a = 2.6RMars when its pericentre rate equals the 
Martian mean motion. Deimos is affected by a 2:1 mean motion 
resonance with Phobos. These resonances result in rapid eccentric-
ity changes Δe (ref. 17). For Phobos, ΔeMars

2:1 ¼ 0:032
I

, ΔeMars
3:1 ¼ 0:002

I
 

and ΔeSun1:1 ¼ 0:0085
I

, whereas for Deimos, ΔePhobos2:1 ¼ 0:002
I

. Finally, 
in the course of our integrations, we assume that the system has not 
been affected by any other planetary material.

To compute the quality functions, models of Mars, Phobos 
and Deimos are required. For Mars, self-consistently computed 
interior-structure models are obtained by inversion of geophysi-
cal data14 (Supplementary Sections 3 and 4 and Supplementary Fig. 
1), which include the degree-2 tidal amplitude in the form of the 
Love number (k2) and the phase response (Q2), mean density and 
mean moment of inertia (Supplementary Table 1). One of the main 
parameters that controls the orbital history of Phobos is the fre-
quency dependence of tidal dissipation (through the exponent α)14. 
Current observations of a few of the largest low-frequency mars-
quakes are compatible with an effective mantle Martian seismic Q of 
approximately 300 (refs. 11,12). These, together with the observation 
of the Phobos-induced tidal Q around 95 ± 10, suggest an α value 
in the range of 0.25–0.35, in agreement with previous studies14,18. 
For our nominal cases, we employ α = 0.27. Densities of Phobos and 
Deimos are <2 g cm−3, implying porous and therefore highly dissi-
pative, yet weakly bonded, aggregates19,20. This assumption is based 
on the moons’ ability to sustain sharp features (such as ubiquitous 
grooves and fractures)21, their ability to wobble16 and the presence 
of the Stickney crater, an event that would have shattered Phobos 
completely if it had been a monolith or a complete rubble pile, but 
would have left a weakly connected Phobos intact22. For Phobos, 
we use Q2 values based on viscosity estimates and granular friction 
studies23 of loose aggregates, whereas k2 is computed numerically 
for a two-layer model comprising a consolidated core and a porous 
outer layer, each of which is half the satellite radius. Since μ ≫ ρgR 
(where μ is the shear rigidity modulus, ρ is the mean density and g 
is the surface gravity) for both satellites, k2 and Q2 of Deimos can be 
approximated by size-scaling it to Phobos23.

The evolution of planetocentric distances, eccentricities, 
semi-major axes and inclinations of the two satellites is shown 
in Fig. 1 for a set of loosely connected aggregate satellite models. 
Several important observations can be made. First, the evolution of 
Rp shows that the satellites’ orbits intersected, depending on their 
K

0

l
I

, between 1 Gyr and 2.7 Gyr ago and that this intersection hap-
pened close to or above the synchronous radius (Fig. 1a). Second, 
both satellite orbits were initially eccentric and became gradually 
circularized by tidal dissipation in Mars and the moons (Fig. 1b). 
Yet, throughout the integrations, the eccentricities remained small 
enough (<0.35), reducing the possibility of chaotic tumbling24,25 
or chaotic transitions between spin–orbit resonances17,24. Third, 
Phobos’s and Deimos’s semi-major axes (Fig. 1c) remained below 
and above the synchronous radius, respectively. Although coun-
terintuitive, this fact agrees well with our scenario because of the 
eccentricity values involved. Note that a common origin becomes 
possible when the maximal value of Phobos’s planetocentric dis-
tance becomes equal to the minimal value of Deimos’s distance. 
From the planetocentric inequality referred to earlier, we see that, 
although a must obey Rp/(1 + e) < a, it nevertheless can stay below 
Rp. Thus, in the course of our backward integration, Phobos’s Rp can 
become larger than the synchronous radius, with its a value remain-
ing less than this radius. Fourth, the changes in the orbital incli-
nations are found to be small (<0.021 rad) throughout their entire 
history (Fig. 1c inset).

Figure 1a shows that the orbits intersected close to or above the 
synchronous radius (distance range 5.9–6.9 RMars) from as recently 
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Fig. 1 | The orbital history of Phobos and Deimos. a, Tidal evolution 
(backward integrated over time) of the planetocentric distance for a set of 
loosely connected aggregate models of Phobos and Deimos (defined by 
k2/Q2; Supplementary Table 1), with the tidal dissipation inside both Mars 
and the satellites included; k2/Q2 for the individual Phobos and Deimos 
curves span the end-member range indicated in the legend linearly.  
b,c, Corresponding eccentricity (b) and semi-major axes (c) curves.  
The eccentricity jumps are due to resonance interactions (see main text) 
that result in rapid changes in planetocentric distances. Since Rp resides 
within the interval a 1! eð Þ $ Rp $ a 1þ eð Þ

I
, the curves in a for Phobos 

and Deimos correspond to the maximal and minimal planetocentric 
distances, respectively. The point where the orbits intersect, that is, where 
minimal!RDeimos

p
I

!≤!maximal!RPhobosp
I

, is indicative of a common origin. Both 
the planetocentric distance and semi-major axis are normalized to RMars. 
The inset in c shows a plot of the backward-integrated tidal evolution of the 
inclinations relative to Mars’s equator of the moons for the end-member 
cases (for Deimos, the end-members are superimposed). The smallness 
of the inclination over the entire lifetime is justified since in the course of 
uniform equinoctial precession of an oblate host planet, the inclination of 
a near-equatorial satellite follows the evolving equator, with very small 
oscillations about it (Supplementary Section 2). Because of the resonances 
between Phobos and Mars, Phobos and the Sun, and Phobos and Deimos, 
rapid eccentricity changes have occurred over the past ~650!Myr (b).
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[Gerkema, Lam & Maas 2004]

ences in the spatial distribution of barotropic tidal currents.
However, for diurnal and semi-diurnal constituents with
comparable levels of deep-ocean kinetic energy (e.g., K1

and S2; O1 and N2) deep ocean dissipation rates are always
substantially greater for the semi-diurnals, suggesting that
the dependence of barotropic/baroclinic conversion on fre-
quency probably also plays a role. Poleward of the critical
latitude where w < f (roughly 30 degrees for diurnals, but
only near the pole for semi-diurnals) there are no free
internal waves over a flat bottom. In this sub-inertial regime
baroclinic disturbances generated by flow over topography
would remain trapped to the topography. Linear inviscid
theories for generation of internal tides over weak topogra-
phy [e.g., Bell, 1975; Llewellyn Smith and Young, 2001]
predict that averaged over a tidal cycle there would be no
net barotropic/baroclinic energy conversion at sub-inertial
frequencies.
[15] With stronger topographic variations and dissipation

the situation is less clear-cut. Baroclinic disturbances could
propagate away from generation sites along ridges, volcanic
arcs or coasts. Locally trapped baroclinic waves may also
lose significant energy to turbulence and mixing, thus
effectively extracting energy from the surface tides in the
sub-inertial regime. Dissipation maps for the diurnal con-
stituents are at least consistent with this picture. Only at sub-
critical latitudes (mostly in the Indian Ocean) is there any
evidence for significant open ocean barotropic dissipation.
[16] At higher latitudes all significant areas of diurnal

dissipation occur along the edges of basins. Some of this
dissipation (e.g., along the Aleutian arc, east of New
Zealand and possibly even along the west coast of North

America), could involve enhanced dissipation associated
with small scale shelf or other topographically trapped
waves modified by stratification. Since the momentum
equations are treated as weak constraints for mapping
dissipation, the energetic effects on the large scale surface
tide of such small scale (generally baroclinic) processes can
in principal be revealed even if the processes themselves are
not resolved or properly parameterized; see Egbert and Ray
[2001] for extensive discussion. However, with the coarse
resolution of the global dissipation maps it is not possible to
clearly separate dissipation that may be associated with
vorticity waves along shelf edges from the bottom drag
expected in adjacent shallow seas. More detailed local
studies using data from multiple satellites may allow such
resolution in the future.

[17] Acknowledgments. This work was supported by the National
Aeronautics and Space Administration, and by National Science Founda-
tion grant OCE-9819518 to GDE.
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Main semi-diurnal component from measurements 
from TOPEX/Poseidon altimeter data 

Internal gravity wave in the bay of Biscay

The major component of tidal dissipation for the Earth comes from the ocean (especially in shallow 
regions). Without oceans the overall dissipation of the Earth would be 1/10th of what it is today.

Rheology Tidal response
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Tidal response Orbital/rotational evolution

[Efroimsky & Lainey 2007]

CPL Q = cst
CTL Δt = cstQ ∝ ωα

Evolution of Phobos’s semi-major axis

P. Auclair-Desrotour et al.: Understanding tidal dissipation in stars and fluid planetary regions

α

α
α

Fig. 1. Temporal evolution of the semi-major axis a for a class of tidal
models with k2/Q / ��↵ and with di↵erent values of the parameter ↵.
The abscissa represents time in years, the vertical axis measures the de-
viation of the semi-major axis from its initial value a0. Our plots serve to
compare realistic rheologies (↵ = 0.2, 0.3, 0.4) with less physical ones
– those with ↵ = 0 (Kaula 1964) and ↵ = �1 (Singer 1968; Mignard
1979).

gravito-inertial waves in stably stratified zones (e.g. Zahn 1977;
Ogilvie & Lin 2004, 2007). The excitation of these oscillation
eigenmodes by tides then leads to a highly resonant dissipation.

To illustrate our purpose, we consider from now that the cen-
tral body is completely convective and rotates rapidly so that
0  �  1, where � = �/ (2⌦A), which generates tidally excited
inertial waves. There clearly is a strong di↵erence between the
tidal quality factor adopted before for solid bodies that scale as
a smooth power-law of � and the one related to inertial waves.
Indeed, as demonstrated by Ogilvie & Lin (2004), using a lo-
cal approach, their viscous dissipation is expressed as a sum of
corresponding resonant terms3

D(�)=D0

X

{m,n}2N⇤⇥N⇤
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where �̃ = � + iE

⇣
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2
⌘

and E = ⌫/
⇣
2⌦AL

2
⌘

is the Ekman
number of the fluid, ⌫ is the viscosity, and L a characteristic
length; m and n are the vertical and horizontal wave-vectors of
inertial waves, respectively; finally, fmn and hmn are the coe�-
cients of the Fourier series of the excitation. The tidal dissipation
is thus a complex set of resonant peaks depending on the viscos-
ity and on the rotation of the fluid. Since Q (�) / [D (�)]�1, we
coupled it with the dynamical Eqs. (3), (4) of our model.

4.2. Numerical integration

To evaluate the e↵ects of these resonances on dynamics, we
computed the evolution of the semi-major axis of the orbit with
the same parameters as for solid tides, but giving as input a syn-
thetic Q

�1 (�) factor written as D (�) given in Eq. (6). Our fluid
is characterised by its Ekman number, E = 10�5, which is a
value often adopted in the literature for planetary convective lay-
ers, and which allows one to derive a peaked dissipation (see
Fig. 2)4. The maximal rank of the sum (Nmax) was chosen to be
3 Global models lead to the same behaviour.
4 The Eckman number depends on the modelling of the turbulent vis-
cosity (e.g. Ogilvie & Lesur 2012).

Fig. 2. Resonant tidal dissipation spectrum D resulting from inertial
modes as a function of the normalised tidal frequency � = �/(2⌦A)
assuming Nmax = 5.
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Fig. 3. Evolution of the semi-major axis a over time with a Q factor pro-
portional to inertial wave dissipation in fluids (green curve), and with a
constant Q factor (blue dashed curve). The abscissa represents time in
years, the vertical axis measures the evolution of the semi-major axis
from the initial value a0.

relatively low, with Nmax = 5, to increase the computation speed.
Following Ogilvie & Lin (2004), we describe the excitation with
the coe�cients

fmn =
1

mn2 , gmn = 0, and hmn = 0. (7)

The simulation clearly shows that, in contrast to solid tides,
where the power scaling law implies a smooth evolution of a, a
contrasted Q factor, that strongly depends on the tidal frequency,
enables abrupt changes of a (see Fig. 3). As the perturber comes
nearer to the central body, its mean motion increases. That is
why dissipation varies strongly during the evolution of the sys-
tem and, at each time it meets a resonance, there is a jump of a,
which is bounded to the properties of the peak: the higher and
wider the peak, the higher the amplitude of the jump. This is the
resonance-locking identified by Witte & Savonije (1999) in the
stellar case. However, we note that when � > 1, at the end of the
simulation, the evolution of a becomes smooth again. The reason
for this behaviour is that we are beyond the range of frequencies
where inertial waves are excited. Then, the tidal dissipation is
that of the equilibrium tide that corresponds to the non-resonant
background of D observed in Fig. 2. Finally, as demonstrated in
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relatively low, with Nmax = 5, to increase the computation speed.
Following Ogilvie & Lin (2004), we describe the excitation with
the coe�cients

fmn =
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mn2 , gmn = 0, and hmn = 0. (7)

The simulation clearly shows that, in contrast to solid tides,
where the power scaling law implies a smooth evolution of a, a
contrasted Q factor, that strongly depends on the tidal frequency,
enables abrupt changes of a (see Fig. 3). As the perturber comes
nearer to the central body, its mean motion increases. That is
why dissipation varies strongly during the evolution of the sys-
tem and, at each time it meets a resonance, there is a jump of a,
which is bounded to the properties of the peak: the higher and
wider the peak, the higher the amplitude of the jump. This is the
resonance-locking identified by Witte & Savonije (1999) in the
stellar case. However, we note that when � > 1, at the end of the
simulation, the evolution of a becomes smooth again. The reason
for this behaviour is that we are beyond the range of frequencies
where inertial waves are excited. Then, the tidal dissipation is
that of the equilibrium tide that corresponds to the non-resonant
background of D observed in Fig. 2. Finally, as demonstrated in
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Rocky body
Evolution of Phobos’s semi-major axis

Fluid body

[Auclair-Desrotour+14]

Smooth evolution
Erratic evolution
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Fig. 3. The evolution of the lunar semi-major axis with time. The Earth-
Moon separation aM is plotted for the three studied models taking the
best fit values of the free parameters (H,�R) as described in Figure 2
and in the main text. Plotted on top of the evolution curves are geologi-
cal inferences of aM from cyclostratigraphy and tidal laminae data (Ta-
bles D.1 and D.2). The shaded envelope corresponds to 2�-uncertainty
in the fitted parameters of the combined model (Appendix C). In the
narrow window we zoom over the most recent 250 Myrs of the evolu-
tion, and we compare to the evolution corresponding to explicit numer-
ical tidal modelling using paleogeographic reconstructions (Green et al.
2017), and the prediction of the numerical solution La2004 (Laskar
et al. 2004).

of 6.5RE within 250 Myr. Beyond this age, the evolution follows
again the tidal dissipation background spectrum before terminat-
ing with the impact.

5. A new target for geological studies

In this article we built the first semi-analytical physical model
that fits the most accurate constraints in the Earth-Moon evolu-
tion: the present tidal dissipation rate and the age of the Moon.
We have deliberately avoided to fit our model to any of the avail-
able geological data. In an amazing way, the unique solution of
our combined model is a nearly perfect match to a large set of
those geological data (Figure 3 and Figs. 5, 6). This solution will
provide a new target for geological studies. It clearly validates
the cyclostratigraphic approach, which estimates the Earth’s pre-
cession frequency from stratigraphic sequences (Meyers & Ma-
linverno 2018; Huang et al. 2020; Sørensen et al. 2020; Lantink
et al. 2021) (Table D.1). In particular, the cyclostratigraphic eval-

Fig. 4. A history of the tidal torque. The logarithm of the semi-diurnal
tidal torque of the Earth (normalized by its present value: T̃ = T /T (t =
0)) is plotted as a function of time. The solid curve corresponds to the
torque of the combined model that involves three phases: in the first
phase, a hemispherical ocean migrates on the surface of the Earth fol-
lowing the evolution of the continental barycenter of Figure 1. Lacking
a continuous plate tectonics model beyond 1 Ga, in Phase 2 we fix the
hemispherical ocean to its configuration at 1 Ga to avoid modelling dis-
continuities. It is noteworthy that the attenuated tidal torque over this
phase is not due to the fixed oceanic position but due to the tidal re-
sponse occupying the non-resonant background of the spectrum for the
tidal frequencies associated with this interval. Beyond tswitch, we enter
Phase 3 of the model with the global ocean configuration. Dashed and
dashed-dotted curves correspond respectively to the global and hemi-
spherical oceanic torques that are ignored over the specified intervals
by the selective combined model.

uation of the Earth-Moon distance at 2459± 1.3 Ma in the Jo↵re
banded iron formations (BIF) (Lantink et al. 2021) is in remark-
able agreement with our model, compared to the equivalent es-
timates deciphering tidal rhythmites in the (⇠ 2450 Ma) Weeli
Wooli BIF in Australia (Walker & Zahnle 1986; Williams 2000).
Our target curve can probably now be used to elaborate robust
procedures for the analysis of these tidal rhythmites that led
sometimes to divergent interpretations (Walker & Zahnle 1986;
Sonett & Chan 1998; Williams 2000) (Table D.2). We obtain
a striking fit with the estimate of aM at 3.2 Ga obtained through
the analysis of the Moodies group rhythmites (Eriksson & Simp-
son 2000; de Azarevich & Azarevich 2017), but we do not deny
that this agreement could be coincidental, and a new analysis
of these sections, associated with cyclostratigraphic estimates, is
certainly welcome. We expect that large progress will be made
in the near future with the analysis of many cyclostratigraphic
records, which could then be used to constrain even more our
physical model. Of particular interest are the sequences that oc-
cur during the resonant states (or in their vicinity), correspond-
ing to the steep slopes in Figure 3. Finally, as this model pro-
vides a coherent history of the Earth-Moon distance, it can also
be used to constrain the time scale of lunar formation scenario
(Ćuk et al. 2016). This coherence between the geological data
and the present scenario for the Earth-Moon evolution will also
promote the use of these geological data, and in particular of
the cyclostratigraphic geological data as a standard observational
window for recovering the past history of the solar system.
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Planetary tide: gas giants

Constraints from the Solar System

[Lainey+09, 12, 17]

Dissipation stronger than 
what CPL model predicts 

Dissipation depends 
on frequency

V. Lainey et al. / Icarus 281 (2017) 286–296 289 
Table 1 
Fitting k 2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and Rhea (S5) frequencies. 

k 2 k 2 / Q (S2) k 2 / Q (S3) k 2 / Q (S4) k 2 / Q (S5) 
IMCCE 0.372 + / − 0.003 (7.4 + / − 3.1) ×10 −5 (10.9 + / − 6.1) ×10 −5 (16.1 + / − 3.8) ×10 −5 (122.3 + / − 15.0) ×10 −5 
JPL 0.377 + / − 0.011 (5.5 + / − 4.7) ×10 −5 (6.0 + / − 2.4) x 10 −5 (21.5 + / − 7.3) ×10 −5 (125.8 + / − 14.9) ×10 −5 

Table 2 
Fitting k 2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and Rhea (S5) frequencies assuming Enceladus’ tidal 
equilibrium. 

k 2 k 2 / Q (S2) k 2 / Q (S3) k 2 / Q (S4) k 2 / Q (S5) 
IMCCE 0.372 + / − 0.003 (18.1 + / − 3.1) ×10 −5 (11.9 + / − 6.1) ×10 −5 (15.0 + / − 3.8) ×10 −5 (121.6 + / − 15.0) ×10 −5 
JPL 0.394 + / − 0.011 (27.1 + / − 13.5) ×10 −5 (21.5 + / − 6.6) ×10 −5 (5.4 + / − 2.1) ×10 −5 (127.9 + / − 13.3) x 10 −5 

Fig. 1. Variation of the Saturnian tidal ratio k 2 /Q as a function of tidal frequency 2( !-n), where ! and n denote its rotation rate and the Moon’s mean motion, respectively. 
Four frequencies are presented associated with Enceladus’, Tethys’, Dione’s and Rhea’s tides. IMCCE and JPL solutions are in red and green, respectively. They are shown 
slightly shifted from each other along the X-axis for better visibility. Orange lines refer to the global estimation k 2 / Q = (15.9 + / − 7.4) ×10 −5 . (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article). 

In giant planets, two main mechanisms are invoked for tidal 
dissipation: the viscous dissipation associated to viscoelastic defor- 
mation of a solid core (as initially proposed by Dermott (1979) and 
further explored here) and the fluid friction applied on tidal waves 
propagating in the deep gaseous envelope (see e.g. Ogilvie & Lin 
2004 and the discussion hereafter). As demonstrated in Guenel, 
Mathis and Remus (2014) , these two mechanisms may have com- 
parable strengths and superpose. 

Here, the tidal response of Saturn’s interior is first computed 
from all the considered density profiles assuming that the core is 
solid and viscoelastic, with radius R core (varying typically between 
70 0 0 and 16,0 0 0 km) overlaid by a thick non-dissipative fluid en- 
velope (to explore the own effect of the core), similar to the ap- 
proach of Remus et al. (2012, 2015 ). The envelope is only taken 
into account for the hydrostatic effects it applies on the core. The 
complex Love number k c 2 (including both the response aligned 
with tide-raising potential and the dissipative part in quadrature) 
is computed by integrating the 5 radial functions, y i , describing the 
displacements, stresses, and gravitational potential from the planet 

center to the surface, following the formalism initially introduced 
by Alterman et al. (1959) . The viscoelastic deformation in the solid 
viscoelastic core is computed using the compressible elastic for- 
mulation of Takeuchi & Saito (1972) , adapted to viscoelastic media 
(see Tobie et al., 2005 for more details). For the fluid envelope, the 
static formulation of Saito (1974) is used. In this formalism, the 
fluid friction is not modeled. However, it allows us to take into ac- 
count the gravitational effects of the fluid envelope on the solid 
core deformation, which has a strong impact in the case of very 
thick fluid envelope like in the case of Saturn as demonstrated by 
Dermott (1979) and Remus et al. (2012, 2015 ). The system of dif- 
ferential equations (6 in the core and 2 in the envelope) is solved 
by integrating from the center to the surface three independent 
solutions using a fifth order Runge-Kutta method with adaptive 
stepsize control, and by applying the appropriate condition at the 
solid core/fluid envelope interface and at the surface (see Takeuchi 
& Saito 1972 and Tobie et al. 2005 for more details). The com- 
plex Love number k 2 c is determined from the complex 5th radial 
function at the planet surface, y 5 c (R s ) , and the global dissipation 

Saturn

Tidal response Orbital/rotational evolution
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Tidal interactions

‣ Why are tides important?

★ Tides, the easy way

★ Tides, the hard way…

‣ Some constraints brought by studying tides…

‣ A bit of theory

★ Stars

★ Planets

★ Multi-planet systems

!

"



Tides in multiplanet systems
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Tides in N-body systems

Tidal evolution for multiple planet-systems: 

If equilibrium is possible [Lorb > 3/4 (Lorb+Lrot), Hut, 1980], then: 

‣Eccentricity = 0

‣Planetary spin and orbital angular momentum aligned

‣Planetary spin synchronized
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Tides in N-body systems

If equilibrium is possible [Lorb > 3/4 (Lorb+Lrot), Hut, 1980], then: 

‣Eccentricity = 0

‣Planetary spin and orbital angular momentum aligned

‣Planetary spin synchronized

➜ Eccentricity reaches an equilibrium between 
tidal damping and planet-planet excitation 
➜ Obliquity reaches an equilibrium
➜ Rotation depends on eccentricity and is 
influenced by planet-planet excitation

Tidal evolution for multiple planet-systems: 
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Tides and stability

Borucki+13

The assessment of stability depends on whether tides are taken into account  

Star : 
M★ = 0.69 M⊙

5 planets:  
0.54 < Rp/R⊕ < 1.95 
0.05 < a/AU < 0.72
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The assessment of stability depends on whether tides are taken into account  

Pure N-body simulation

b
c
de

f

b

cde

f

Simulation with Tides and GRvs

Bolmont+15

Tides and stability
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Constraining the eccentricity

Star : 
M★ = 0.95 M⊙

5 planets:  
0.015 < a/AU < 5.4

http://www.spacetelescope.org/images/heic1603a/

Demory+11

55 Cancri

http://www.spacetelescope.org/images/heic1603a/
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Constraining the eccentricity

http://www.spacetelescope.org/images/heic1603a/

55 Cancri

For an Earth-like dissipation

Orbital parameters from 
Dawson & Fabrycky (2010) 

Bolmont et al. 2013

Eccentricity of planet e should be 
lower than 0.002

Equilibrium between planet-planet 
excitation and tidal damping

http://www.spacetelescope.org/images/heic1603a/
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Star : 
M★ = 0.09 M⊙

5 planets:  
0.76 < Rp/R⊕ < 1.1 
0.01 < a/AU < 0.06

Gillon+16,17

Tides in N-body systems: TRAPPIST-1
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σp = 0.1 σ⨁

σp = 1 σ⨁

σp = 10 σ⨁

Dissipation factor

later

σp = 0.1 σ⨁

σp = 1 σ⨁

σp = 10 σ⨁

Dissipation factor

later

σp = 0.1 σ⨁

σp = 1 σ⨁

σp = 10 σ⨁

Dissipation factor

later

σp = 0.1 σ⨁

σp = 1 σ⨁

σp = 10 σ⨁

Dissipation factor

later
T1-b T1-c

T1-e T1-f T1-g T1-h

T1-d

σp = 0.1 σ⨁

σp = 1 σ⨁

σp = 10 σ⨁

Dissipation factor

later

All planets should have eccentricities lower than 0.01
Planets b & c are likely to have eccentricities lower than 0.001

Turbet+18

Constraining the eccentricity
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Constraining the rotation

The rotation evolves very fast!

In ~200,000 yr :
•Obliquity damped
•Rotation pseudo-synchronized
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Constraining the rotation

The rotation evolves very fast!

In ~200,000 yr :
•Obliquity damped
•Rotation pseudo-synchronizedTurbet+18

➡  Impact on the climate of the planets
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Non zero eccentricity and obliquity
➡Tidal heat flux

Constraining the tidal heat flux
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Tidal heating? Significant or not?

M. Turbet et al.: Climate diversity of cool planets around cool stars

Table 2. Possible tidal heat flux for TRAPPIST-1 planets coming from a dynamical simulation of the system.

Parameter Tb Tc Td Te Tf Tg Th Unit
ecc mean (⇥10�3) 0.6 0.5 3.9 7.0 8.4 3.8 2.8
ecc max (⇥10�3) 1.5 1.2 5.9 8.3 9.7 4.8 4.0
�tidmean 4.8 0.17 0.17 0.09 0.01 < 10�3 < 10�4 W m�2

�tidmax 25 0.90 0.38 0.12 0.02 < 10�3 < 10�4 W m�2

Fig. 3. Tidal heat flux map (in W m�2) as a function of semi-major
axis (X axis) and eccentricity (Y axis) for planets with the Earth mass
and radius. The dissipation e�ciency is assumed to be one tenth of the
Earth one to account for the dissipation in the mantle only. The tidal flux
scales linearly with this parameter. But one has to keep in mind that
this value can easily change by orders of magnitude with the internal
structure of each planet. This map should thus serve as a rough guide
only.

to assess the necessary conditions for TRAPPIST-1 outer planets
to sustain a global, background atmosphere.

We assume for now that the surface is covered by water
(liquid or icy) because it is expected to be the most abundant
volatile, as well as the less dense (this is a key element for
planetary di↵erentiation) and most condensable (see Figure 4).

We refer the reader to the review by Forget & Leconte (2014)
(and the references therein) for more information on possible
sources and sinks of these volatile species.

4.1. Can a global atmosphere avoid atmospheric collapse?

To begin, we assume that the outer TRAPPIST-1 planets initially
start with an atmosphere. On synchronously rotating planets, the
nightside surface temperature can be so low that the atmosphere
itself starts to condense on the surface. We look for the
minimal atmospheric pressure necessary to prevent them from
atmospheric collapse, a configuration for which all the volatiles
are permanently frozen on the nightside.

For this, we performed several simulations of TRAPPIST-1f,
g and h planets (surface albedo fixed to 0.2 corresponding to
a water ice surface around TRAPPIST-1, or coincidentally to a
rocky surface) endowed with a pure N2 atmosphere (with H2O as
a variable species) for various atmospheric pressures (from 1 bar

down to 10 millibar). Surface temperature maps corresponding
to these experiments are shown in Figure 5.

We find that a pure N2 atmosphere is quite resistant to
atmospheric collapse for each of the three TRAPPIST-1 (fgh)
outer planets. A collapse would be expected for N2 partial
pressure (pN2) slightly lower than 10 millibar, and this value
should hold for each of the 3 planets notwithstanding their
various levels of irradiation. Our simulations indicate in fact
(see Fig 5) that if TRAPPIST-1h is always globally colder than
TRAPPIST-1g (which is globally colder than planet f), it is not
necessarily the case for the temperature of their cold points.
TRAPPIST-1f, g and h planets have rotation periods ⇠ 101 Earth
days and they lie thus near the transition between slow and
fast rotating regimes (Edson et al. 2011; Carone et al. 2015,
2016). They should be in one of these two regimes, and could
potentially be in both, depending on the initial state (Edson
et al. 2011). Since the temperature of the cold points is critically
dependant on the circulation regime (see Carone et al. 2016,
their Figure 1,2,3), it is di�cult to assess which of these 3
TRAPPIST-1 planets should be more sensitive to atmospheric
collapse.

In the same fashion than N2, CO and O2 are rather
transparent in the infrared region of telluric emission (between
10 and 100 microns, here) and have a similar molar mass
than N2 (between 28 and 32 g mol�1). We can then safely
extend our results for N2 to CO and O2-dominated atmospheres.
These two gases are slightly more condensable gas and are thus
expected to collapse for atmospheric pressure slightly higher
than 10 millibar (see the legend of Figure 5).

More generally, note that as the dominant gas becomes less
and less volatile, building up an atmosphere becomes more and
more complicated due to atmospheric collapse. At any rate,
such collapse would trigger a positive feedback, because as the
atmosphere condenses, the heat redistribution would become
less e�cient, leading to even more condensation. This would
drive the planets to a complete and irreversible atmospheric
collapse.

4.2. How much volatile can be trapped on the nightside of an
airless planet?

Conversely, we suppose now that the planets initially start
without global atmosphere, which could have been blown
away during the early active phase of TRAPPIST-1. In this
configuration, all the volatiles (accreted, outgassed, or residual
from the initial collapse) are expected to accumulate on the
cold side of the planet. We calculate here the maximum amount
of volatiles that could be trapped in ice caps before a global
atmosphere would be (re)formed.

The nightside surface temperature Tnight on an airless tidally
locked planet is determined by the geothermal heat flux Fgeo of
the planet:

Tnight =

 
Fgeo

�

! 1
4

. (1)

Article number, page 7 of 19

‣ Tidal heat flux using CTL model [from N-body simulations with tides; Turbet+18]

≈ Earth’s heat flux [Pollack+93]
> Io’s tidal heat flux [Spencer+00]

‣ Maximum tidal heating for uniform planets and Maxwell rheology [Makarov+18]

Constraining the tidal heat flux

‣ Tidal heat flux using model with multi-layer bodies and Andrade’s rheology [Bolmont+20]

‣ Tidal heat flux using model for “uniform” planets and Maxwell rheology [uniform viscosity and rigidity based on 
each planet’s composition; Barr+18]
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Tidal heat flux and habitability

Habitable zone

Non resonant system

Habitable zone

Resonance 2:1
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Brown dwarf and 3 Earth-like planets [Bolmont 2018]
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Tidal heat flux and habitability

Habitable zone

Non resonant system

Habitable zone

Resonance 2:1

Also discussed in Barnes+10 for planets around M-dwarfs
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Tidal heat flux and habitability

Habitable zone

Non resonant system

Habitable zone

Resonance 2:1

Also discussed in Barnes+10 for planets around M-dwarfs
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Questions?


