Star-planet tidal interactions

- Why are tides important?
- A bit of theory
- \star Tides, the easy way
- ★ Tides, the hard way...
- Some constraints brought by studying tides...
 - \star Stars
 - \star Planets
 - ★ Multi-planet systems

Tue Aug 9 08:46:58 2022

Orbital Period [days]

Tue Aug 9 08:54:54 2022

Solar system (not to scale)

Habitable Zone

Only Habitable Zone planets available for atmospheric characterization!

C

[e.g. Fauchez+18, Lovis+17]

System around cool dwarfs

7

Rotation Winds Seasons

Climate

Planetary tide

Tidal Heat Flux

Additional heating

To be able to correctly identify a biosignature, we need to understand the system as a whole I

- Why are tides important?
- A bit of theory
- \star Tides, the easy way
- ★ Tides, the hard way...
- Some constraints brought by studying tides...

* Stars

★ Planets

12

A bit of theory

Ingredients

- At least 2 objects (could be star-planet, planet-satellite, star-star...)
- Extended objects (beyond newtonian point mass description)
- Some kind of dissipative process (e.g. thermal dissipation, viscous dissipation...)
- Objects shouldn't be too far from each other
- Some time

Let's start simple

Tidal field

Tidal interaction appears when we consider that a body is not a point mass but extended

Note that the primary frame here is not rotating, other terms would appear if we were to consider a co-rotating frame (rotation + Coriolis) The tidal field C(M) = G(M) - G(P) appears only when passing from an inertial frame to the primary-centered frame

Tidal field

Tidal interaction appears when we consider that a body is not a point mass but extended

16

Tidal field

17

Rotation frequency of primary

 Ω_p

Three different configurations:

ary Orbital frequency of secondary $\propto 1/P$

 n_{s}

 $\star \Omega_{\rm p} = n_{\rm s}$

 $\star \Omega_{\rm P} > n_{\rm s}$

 $\star \Omega_{\rm p} = n_{\rm s}$

Orbital distance of secondary $a_s = r_c$

- Earth-Moon system
- It's the **tidal equilibrium state!**

19

Minimize the deformation/dissipation

ns

Synchronize the rotation

Minimize the deformation/dissipation

Minimize the deformation/dissipation

• Obliquity $\rightarrow 0$

Minimize the deformation/dissipation

- \blacktriangleright Eccentricity \rightarrow 0
- Obliquity $\rightarrow 0$
- Synchronize the rotation

Is an equilibrium always possible?

Can the system reach an equilibrium $(\Omega_p = n_s)$?

Is an equilibrium always possible?

Can the system reach an equilibrium $(\Omega_p = n_s)$?

L is the **total angular momentum** (conserved quantity) h is the orbital angular momentum

Equilibrium exists if L>L_{crit} (which depends on the masses and moments of inertia)

Stable equilibrium reachable if h > 3/4 L

Is an equilibrium always possible?

Can the system reach an **equilibrium** $(\Omega_p = n_s)$?

Earth-Moon system today ($a = 60 \text{ R}_{\oplus}, \text{P}_{\oplus} = 24 \text{ day}$) Fquilibrium at $a \approx 90 \text{ R}_{\oplus}$ and $\text{P}_{\oplus} \approx 52 \text{ day}$

Stellar tide

Planetary tide

Stellar tide

Planet inside corotation -> planet migrates inward

Planet outside corotation -> planet migrates outward

Eccentricity decreases

Inclination of planetary orbit decreases

• Timescales depend on stellar radius and the stellar dissipation

Stellar tide

Planet inside corotation -> planet migrates inward

Planet outside corotation -> planet migrates outward

Eccentricity decreases

Inclination of planetary orbit decreases

• Timescales depend on stellar radius and the stellar dissipation

In many articles, you might find the tidal quality factor Q (or time lag Δt) Low Q (high Δt) means a fast evolution High Q (low Δt) means a slow evolution

Stars: $Q_{\star} \approx 10^5 - 10^8$ [Penev, 2018]

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance

Weakly viscous fluid approximation e.g. constant time lag model [e.g. Hut 1981]

Eccentricity = 0 -> Synchronization Eccentricity $\neq 0 \rightarrow Pseudo-synchronization$

Anelastic material approximation e.g. Andrade rheology [e.g. Efroimsky+, Makarov+13]

Eccentricity = $0 \rightarrow Synchronization$

Eccentricity $\neq 0 \rightarrow$ Spin-orbit resonance

Ex: Mercury has $P_{rot} = 2/3 P_{orb}$

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance
- Obliquity of planet decreases
- Eccentricity of planet decreases
- Planet migrates inward
- Due to deformation, planet generates heat

• Timescales depend on planetary radius and the planetary dissipation

41

Planetary tide

- Circular orbit: quick synchronization
- Eccentric orbit: quick pseudo-synchronization / spin-orbit resonance
- Obliquity of planet decreases
- Eccentricity of planet decreases
- Planet migrates inward
- Due to deformation, planet generates heat
- Timescales depend on planetary radius and the planetary dissipation

In many articles, you might find Q (or Δt) Low Q (high Δt) means a fast evolution High Q (low Δt) means a slow evolution

Stars: $Q_{\star} pprox 10^5 - 10^8$ [Penev, 2018]

Earth: $Q_{\oplus} \approx 12 \ (\Delta t = 638 \text{ s})$ [Goldreich & Soter 1966; Neron de Surgy & Laskar 97]

Jupiter: $Q_{iup} \approx 3 \times 10^4$ [e.g., Lainey+2009, for lo's frequency]

details... Any questions ?...

Before we go more into

- Why are tides important?
- A bit of theory
- **★** Tides, the easy way
- ★ Tides, the hard way...

Some constraints brought by studying tides...

* Stars

★ Planets

S

Tidal interactions

Tidal force perturbs the hydrostatic balance. And this results in:

A mass redistribution

Perturbations of the gravitational potential

Tidal interactions

There are **two components** to tides:

• The equilibrium tide

Large-scale circulation resulting from the hydrostatic adjustment to the tidal perturbation

The dynamical tide

Fluid (elastic) eigenmodes of oscillations of the distorted body

Tidal theory: Equilibrium tide

Let us consider a spherical body C (the primary) of mass M on presence of a second body S (secondary) of mass *m*

How does the primary **adjust its shape** so that **all** forces are balanced? i.e. so that it is in **hydrostatic equilibrium**?

Hydrostatic equilibrium

$$0 = -\frac{1}{\rho} \nabla P - \nabla \mathcal{V}$$

Gravitational potential

Pressure gradient force

Tidal theory: Equilibrium tide

You can show that the shape of the deformed primary is close

Let's calculate the perturbing tidal potential

49

Let us consider \mathbf{r} the position of the secondary S of mass m, and \mathbf{r}' the position of a point P' at the surface of the primary

The gravitational potential \mathcal{V}_S created by S at the point P' is given by:

$$\mathcal{V}_{S}(\mathbf{r},\mathbf{r}') = -\frac{\mathcal{G}m}{\|\mathbf{r}-\mathbf{r}'\|}$$
$$= -\frac{\mathcal{G}m}{\sqrt{r^{2}+r'^{2}-2(\mathbf{r}\cdot\mathbf{r}')}}$$

The gravitational potential \mathscr{V} created by P at the p

point P' is given by:
$$\mathscr{V}(\mathbf{r}, \mathbf{r}') = -\frac{\mathscr{G}m}{\sqrt{r^2 + r'^2 - 2(\mathbf{r} \cdot \mathbf{r}')}}$$

 $1/\sqrt{r^2 + r'^2 - 2(\mathbf{r} \cdot \mathbf{r}')}$ can be rewritten using Legendre als:
 $\mathscr{V}(\mathbf{r}, \mathbf{r}') = -\frac{\mathscr{G}m}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^l P_l(\cos\phi)$
 $= \sum_{l=0}^{\infty} V_l(r, r')$

where ϕ is the angle between ${f r}$ and ${f r}'$.

The **tidal potential** is therefore given by:

$$\mathcal{V}_{\text{tid}}(\mathbf{r},\mathbf{r}') = -\frac{\mathscr{G}m}{r} \sum_{l=2}^{\infty} P_l(\cos\phi) \left(\frac{r'}{r}\right)^l$$

In practice, we only consider the **quadrupolar** term l = 2

This is true if $r' \ll r$

The approximation is valid for $a > 5R_p$ and for small eccentricities [Mathis & Le Poncin-Lafitte 2009]

$$\Gamma_{\text{tid}}(\mathbf{r},\mathbf{r}') = -\frac{\mathscr{G}m}{r}P_2(\cos\phi)\left(\frac{r'}{r}\right)^2 \propto \frac{1}{r^3}$$

The **tidal potential** is therefore given by:

$$\mathcal{V}_{\text{tid}}(\mathbf{r},\mathbf{r}') = -\frac{\mathscr{G}m}{r} \sum_{l=2}^{\infty} P_l(\cos\phi) \left(\frac{r'}{r}\right)^l$$

In practice, we only consider the **quadrupolar** term l = 2This is true if $r' \ll r$

The approximation is valid for $a > 5R_p$ and for small eccentricities [Mathis & Le Poncin-Lafitte 2009]

$$\mathcal{T}_{\text{tid}}(\mathbf{r},\mathbf{r}') = -\frac{\mathscr{G}m}{r} P_2(\cos\phi) \left(\frac{r'}{r}\right)^2 \propto \frac{1}{r^3}$$

We can express $\cos\phi$ with the longitudes ϕ and ϕ' and colatitudes heta and heta' of P and P' (addition theorem)

The tidal potential is therefore given by:

$$\mathcal{V}_{\text{tid}}(\mathbf{r}, \mathbf{r}') = -\frac{\mathscr{G}m}{r} \left(\frac{r'}{r}\right)^2 \times \left[\frac{1}{2} \left(3\cos^2\theta' - 1\right) \frac{1}{2} \left(3\cos^2\theta - 1\right) + \frac{3}{4}\sin^2\theta' \sin^2\theta \cos\left(2(\varphi - \varphi')\right) + \frac{3}{4}\sin 2\theta' \sin 2\theta \cos(\varphi - \varphi')\right]$$

- The term in $\cos^2 \theta = 1/2(1 + \cos 2\theta)$ varies with frequency 2n: it's the fortnightly tide
- The term in $\cos(\varphi \varphi')$ varies with a frequency of $\Omega n \approx \Omega$: it's the diurnal tide

Change with a frequency equal to the mean motion *n* Change with a frequency equal to the primary spin Ω

For the Earth-Moon case ($\Omega \gg n$), we can see different components associated to different frequencies:

• The term in $\cos(2(\varphi - \varphi'))$ varies with a frequency of $2(\Omega - n) \approx 2\Omega$: it's the semi-diurnal tide

• The term in $\cos(2(\varphi - \varphi'))$ varies with a frequency of $2(\Omega - n) \approx 2\Omega$: it's the semi-diurnal tide

2 high tides in one day

A convenient way of writing the potential comes from *Kaula* [1962, 1964]:

It allows to transform the **coordinates** of the secondary (r, θ, φ) in useful **dynamical parameters**:

$$\mathcal{V}_{\text{tid}}(\mathbf{r},\mathbf{r}') = -\frac{\mathscr{G}m}{a} \sum_{l=2}^{\infty} \left(\frac{r'}{a}\right)^{l} \sum_{m=0}^{l} \frac{(l-m)!}{(l+m)!} (2-\delta_{0m}) P_{l}^{m}(\cos\theta') \sum_{p=0}^{l} \sum_{q\in\mathbb{Z}} F_{lmp}(I) G_{lpq}(e)$$

$$\left[\cos m\lambda' \left\{\cos \atop \sin \right\}_{l-m \text{ odd}}^{2-m \text{ even}} \left(\omega_{lmpq}\right] + (l-2p)\omega^{*} + m\Omega^{*}\right)$$

$$+\sin m\lambda' \left\{-\sin \atop -\cos \right\}_{2-m \text{ odd}}^{2-m \text{ even}} \left(\omega_{lmpq}\right] + (l-2p)\omega^{*} + m\Omega^{*}\right) = \sum_{l=2}^{\infty} \sum_{m=0}^{l} \sum_{p=0}^{l} \sum_{q\in\mathbb{Z}} V_{lmpq}$$

 ω_{lmpq} are the frequencies of the forcing and are given by: $\omega_{lmpq} = (l - 2p + q)n - m\Omega$

- eccentricity *e*
- ▶ inclination *I*,
- argument of periastron ω^* ,
- argument of ascending node Ω^*

A convenient way of writing the potential comes from Kaula [1962, 1964]: It allows to transform the **coordinates** of the secondary (r, θ, φ) in useful **dynamical parameters**:

 ω_{lmpq} are the frequencies of the forcing and are given by: $\omega_{lmpq} = (l - 2p + q)n - m\Omega$

For l = 2, a circular orbit, and a coplanar orbit, there is one excitation frequency given by:

 $\omega_{lmpg} = 2(n)$

(it's the semi-diurnal frequency)

A convenient way of writing the potential comes from Kaula [1962, 1964]: It allows to transform the **coordinates** of the secondary (r, θ, φ) in useful **dynamical parameters**:

 ω_{lmpq} are the frequencies of the forcing and are given by: $\omega_{lmpq} = (l - 2p + q)n - m\Omega$

For l = 2, a circular orbit, and a coplanar orbit, there is one excitation frequency given by:

For an eccentric orbit or for an inclined orbit, additional frequencies are excited

(it's the semi-diurnal frequency) $\omega_{lmpq} = 2(n - \Omega)$

Let's calculate the potential created by deformed body

We use here the **theory of Love**: The **potential** of the **deformed body** Φ at its surface is **proportional** to the corresponding component of the **perturbing potential** \mathcal{V}_{tid} at its surface [Love, 1911].

$\Phi_{deformed \ body}(r = R_{surface}) = k_2(\omega) \times \Phi_{secondary}(r = R_{surface})$ $Response \ function$ (depends on properties of primary)

 $k_{l}(\omega_{lmpq}) = \operatorname{Rek}_{l}(\omega_{lmpq}) + i \operatorname{Imk}_{l}(\omega_{lmpq})$

The tidal response can be divided into two components:

Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative) Responsible for orbital precession

Secondary

$$k_l(\omega_{lmpq}) = \operatorname{Re}k_l(\omega_{lmpq})$$

The tidal response can be divided into two components:

- - Responsible for orbital precession
- Effects associated by the viscosity/rheology of the distorted body: delayed response (dissipative)

Secondary

Effects associated by the non-spherical shape of the distorted body: instantaneous response (non-dissipative)

Responsible for orbital and rotational evolution

Constant phase lag

Using one tidal quality factor Q is equivalent of doing many approximations: in particular the phase $\log \epsilon_2(\omega) = \epsilon = \operatorname{cst} [Goldreich 1963]$

> The phase lag has a smooth dependency in the excitation frequency Equilibrium tide

Appropriate for objects made of weakly viscous fluid

Secondary

Constant time lag

Using one time lag Δt is equivalent of doing many **approximations**: in particular the **phase lag** $\epsilon_2(\omega) \propto \omega$ [Darwin 1879]

Tidal interactions

Large-scale circulation Tridal response depends on hydrostatic adjustment to the tical free points of the tical free poin

the properties of the extended body

Equilibrium vs dynamical tide

There are **two components** to tides:

► The equilibrium tide

Large-scale circulation resulting from the hydrostatic adjustment to the tidal perturbation

The dynamical tide

Fluid (elastic) eigenmodes of oscillations of the distorted body

Adapted from Mathis&Remus 2013

N is the **Brunt-Väisälä frequency** (or buoyancy frequency)

Dynamical tide

 2Ω is the inertial frequency

 ω_A is the Alfvén frequency

Adapted from Mathis&Remus 2013

 f_{I} is the **Lamb's frequency**

N is the **Brunt-Väisälä frequency** (or buoyancy frequency)

Tidal interactions

Why are tides important?

A bit of theory

★ Tides, the easy way

Some constraints brought by studying tides...

Planets

 \star Stars

Stellar tide

Tidal response

Orbital/rotational evolution

Internal structure

Stellar tide

Observational constraints

- Meibom & Mathieu [2005] used the tidal circularization of binaries in an open cluster to estimate $Q_{\star} \approx 10^6$
- Jackson+2008 used the tidal circularization of a small sample of exoplanets and found a best fitting value of $Q'_{\star} = 10^{5.5}$ (they also fit a planetary Q_p)
- Collier Cameron & Jardine 2018 used the orbital distance distribution of HJs to calculate $\log_{10}Q'_{\star} = 8.26 \pm 0.14$ for the equilibrium tide regime, but a smaller value of $\log_{10}Q'_{\star} = 7.3 \pm 0.4$ for the dynamical tide regime
- Using the fact that inward migration of a massive planet leads to a spin up of the star, Carone & Pätzold [2007] analyzed the system OGLE-TR-56 and found $Q'_{\star} > 2 \times 10^7$

Penev+18 also used this phenomenon for a statistical study of HJ hosts and find that Q'_{\star} depends on the forcing frequency

Stellar tide

Observational constraints

• For planetary systems close to the edge of tidal disruption, it could be possible to measure the transit timing variation due to the inward migration. Birkby+ [2014] showed that a baseline of a few years is necessary

Stellar tide: equilibrium tide

Velocity field of the equilibrium tide

Dissipation in convective region is higher [Zahn 1977]

74

Stellar tide: equilibrium tide

Velocity field of the equilibrium tide

Sun, with a rotation period of 10 days [Ogilvie & Lin, 07]

Sun, with a **rotation period** of **IO days** [Ogilvie & Lin, 07]

Sun, with a rotation period of **3** days [Ogilvie & Lin, 07] 78

Tidal inertial waves in the convective zone

Average value of dissipation depends on **structural** 10 parameters and rotation $R_{\rm s}(R_{\odot})$ □ZAMS ×TAMS 0.8 $\alpha = R_c/R_\star$ $\beta = M_c/M_\star$ జ ⁰.0 R ত 0.4 0.2 □ZAMS ×TAMS

Tidal inertial waves in the convective zone

Average value of dissipation depends on **structural** parameters and rotation

 $\alpha = R_c / R_\star$ $\beta = M_c / M_\star$

 $\text{Im}k_2 = f(\alpha, \beta)g(\Omega)$

Tidal response

Effect of **tidal inertial waves** in the **convective** envelope of Sun-like stars: Bolmont & Mathis 2016, Gallet+17, Benbakoura+19, Ahuir+21a...

→ Shapes the architecture of the young planetary systems

Effect of tidal gravity waves in the radiative zone of Sun-like stars: Ahuir+21b, Lazovik+21...

Orbital/rotational evolution

Effect of **tidal inertial waves** in the **convective**

Stellar tide: tide vs magnetism

K star orbited by a magnetized hot Neptune [Ahuir+21]

Tidal interactions

Why are tides important?

A bit of theory

★ Tides, the easy way

Some constraints brought by studying tides...

* Stars

 \star Planets

Planetary tide

Radius Mass

Tidal response

Orbital/rotational evolution

Potential composition and internal structure [Sotin+07]

Planetary tide: rocky planets/cores

Planetary tide: rocky planets/cores

Tidal response

Weakly viscous fluid approximation e.g. constant time lag model [e.g. Hut 1981]

Eccentricity = $0 \rightarrow Synchronization$ Eccentricity $\neq 0 \rightarrow Pseudo-synchronization$

synchronization around periastron

Orbital/rotational evolution

Anelastic material approximation e.g. Andrade rheology [e.g. Efroimsky+, Makarov+13]

Eccentricity = $0 \rightarrow Synchronization$ Eccentricity $\neq 0 \rightarrow$ **Spin-orbit resonance**

Ex: Mercury has $P_{rot} = 2/3 P_{orb}$

Planetary tide: rocky planets/cores

Tidal response

Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor

Planetary tide: rocky planets/liquid layers

from TOPEX/Poseidon altimeter data

ne major component of tidal dissipation for the Earth comes from the ocean (especially in shallow) regions). Without oceans the overall dissipation of the Earth would be 1/10th of what it is today.

[Gerkema, Lam & Maas 2004]

Planetary tide: rocky planets/liquid layers

Earth-Moon system

[Farhat+22]

Complex evolution with multiple crossings of resonances

Reproduces well the data!

Planetary tide: gas giants

Constraints from the **Solar System**

Orbital/rotational evolution

Tidal interactions

Why are tides important?

A bit of theory

★ Tides, the easy way

Some constraints brought by studying tides...

* Stars

★ Planets

Tides in multiplanet systems

Tides in N-body systems

Tidal evolution for multiple planet-systems:

If equilibrium is possible [$L_{orb} > 3/4$ ($L_{orb}+L_{rot}$), Hut, 1980], then:

- Eccentricity = 0
- Planetary spin and orbital angular momentum aligned
- Planetary spin synchronized

Tides in N-body systems

Tidal evolution for multiple planet-systems:

If equilibrium is possible $[L_{orb} > 3/4 (L_{orb}+L_{rot}), Hut, 1980]$, then:

- Eccentricity = 0
- Planetary spin and orbital angular momentum aligned
- Planetary spin synchronized

→ Eccentricity reaches an equilibrium between tidal damping and planet-planet excitation

- Obliquity reaches an equilibrium
- → Rotation depends on eccentricity and is **influenced** by planet-planet **excitation**

Tides and stability

The assessment of stability depends on whether tides are taken into account

Tides and stability

The assessment of stability depends on whether tides are taken into account

Pure N-body simulation

Constraining the eccentricity

Demory+11

http://www.spacetelescope.org/images/heic1603a/

55 Cancri

Constraining the eccentricity

Orbital parameters from Dawson & Fabrycky (2010)

Eccentricity of planet e should be lower than 0.002

Equilibrium between planet-planet excitation and tidal damping O

Tides in N-body systems: TRAPPIST-1

Gillon+16,17

Constraining the eccentricity

Dissipation factor

Turbet+18

All planets should have eccentricities lower than 0.01 Planets b & c are likely to have eccentricities lower than 0.001

Constraining the rotation

The rotation evolves very fast!

In ~200,000 yr: •Obliquity damped •Rotation pseudo-synchronized

Constraining the rotation

Impact on the climate of the planets

The rotation evolves very fast!

In ~200,000 yr:

- Obliquity damped
- Rotation pseudo-synchronized

Constraining the tidal heat flux

Non zero eccentricity and obliquity ➡ Tidal heat flux

Constraining the tidal heat flux

Tidal heating? Significant or not?

Tidal heat flux using CTL model [from N-body simulations with tides; Turbet+18]

Parameter	Tb	Tc	Td	Te	Tf	Tg	Th	Unit
ecc mean ($\times 10^{-3}$)	0.6	0.5	3.9	7.0	8.4	3.8	2.8	
ecc max ($\times 10^{-3}$)	1.5	1.2	5.9	8.3	9.7	4.8	4.0	
Φ _{tid} mean	4.8	0.17	0.17	0.09	0.01	$< 10^{-3}$	$< 10^{-4}$	$W m^{-2}$
Φ _{tid} max	25	0.90	0.38	0.12	0.02	< 10 ⁻³	$< 10^{-4}$	$\mathrm{W}~\mathrm{m}^{-2}$
1								

- Maximum tidal heating for uniform planets and Maxwell rheology [Makarov+18]
- each planet's composition; Barr+187
- Tidal heat flux using model with multi-layer bodies and Andrade's rheology [Bolmont+20]

> lo's tidal heat flux [Spencer+00]

• Tidal heat flux using model for "uniform" planets and Maxwell rheology [uniform viscosity and rigidity based on

Tidal heat flux and habitability

Brown dwarf and 3 Earth-like planets [Bolmont 2018]

Tidal heat flux and habitability

Bolmont 18

Also discussed in Barnes+10 for planets around M-dwarfs

Tidal heat flux and habitability

Also discussed in Barnes+10 for planets around M-dwarfs

||3

auestions?

||4