Machine Learning for Exoplanets (Unsupervised ML)

Katia Matcheva

University of Florida

ARES III School 09/11-16/2023

Outline

- The Role of ML
 - work with large volume of data
 - high dimensional data
 - speed up the simulation models
- ML Approaches
 - Unsupervised Learning
 - Supervised Learning
 - Ariel Data Challenge
- Searching for the unexpected
 - anomaly detection

Forward Radiative Transfer Models

 Generate a training database of spectra M by scanning over the input parameters for the forward model.

Inverse Problem: parameter retrievals

In	puts ('	featu					
Planet	м	M	м	м			Retrieval:
	1.41	1.44	1.42	1.52	_		TAUNEX
	0.52	0.55	0.61	0.58		Input La	Hidden Layers
	0.92	1.03	1.11	0.95			
	1.85	1.94	1.99	1.82			

Outputs	(targets)	

Planet	Т (К)	R	R	X
1	1300	1.8	1.6	10
2	650	0.9	1.4	10
3	960	1.9	2.3	10
4	1150	2.0	1.5	10

• The Ariel Data challenge is **ML as a substitute for the Bayesian model**: Train on a database of solutions from TauREx with the goal of reproducing the TauREx predictions.

Meet the DATA!

HELA database (Márquez-Neila P. et al., 2018, Nature, 2, 719)

We use a public database¹ of 100,000 synthetic atmospheres created with an **analytical formula**:

• **Fixed parameters**: gravity, mean molecular mass, planetary radius, star radius, reference pressure (WASP-12b)

- Scanned parameters:
 - ✓ Temperature: 500 2900 K
 - ✓ H_2O volume mixing ratio: $10^{-13} 1$
 - ✓ HCN volume mixing ratio: $10^{-13} 1$
 - ✓ NH_3 volume mixing ratio: $10^{-13} 1$
 - ✓ Cloud opacity: $10^{-13} 10^2$
- Noise floor of 50 ppm on the transit depth (WFC3-like).
- **Spectral range**: 0.838-1.666 μm in 13 bins.

TRANSIT database (with M. Himes, J. Harrington UCF)

We use full forward radiative transfer model (TRANSIT) with variable gravity , g, and self consistent mean molecular mass, μ .

- Fixed parameters: planetary radius, star radius, pressure grid of 100 layers
- Scanned parameters:
 - ✓ Temperature: 500 2900 K
 - ✓ H_2O volume mixing ratio: $10^{-13} 10^{-2}$
 - ✓ HCN volume mixing ratio: $10^{-13} 10^{-2}$
 - ✓ NH_3 volume mixing ratio: $10^{-13} 10^{-2}$
 - ✓ Cloud opacity: $10^{-13} 10^2$
 - ✓ Rayleigh Scattering and CIA
- No noise
- Spectral range: 0.838-1.666 μm in 13 bins

• Ariel 2022 challenge database (Changeat and Yip, RASTI, 2023).

Ariel database (TauRex) with variable gravity , g

- **Fixed parameters**: pressure grid, mean molecular mass, μ
- Varying parameters: target planet/star: R_s, R_p, M_p, g, T_p.
- Scanned parameters:
 - ✓ H_2O volume mixing ratio: $10^{-9} 10^{-3}$
 - ✓ CO_2 volume mixing ratio: $10^{-9} 10^{-4}$
 - ✓ CH₄ volume mixing ratio: $10^{-9} 10^{-3}$
 - ✓ CO volume mixing ratio: $10^{-6} 10^{-3}$
 - ✓ NH_3 volume mixing ratio: $10^{-9} 10^{-4}$
 - ✓ No clouds
 - ✓ Rayleigh Scattering and CIA
- Noise
- **Spectral range**: 0.5-7.5 μm in 52 bins

You can make your own database!

- spectral range, resolution, and noise.
- what are the fixed/varying parameters(T, R, g, m, clouds,...)?
- what are the ranges?
- what type of sampling?
- what optical processes are included?
- what are the physics approximations?

From 1D spectrum to N-dimensions

Supervised/Unsupervised Learning

- Supervised Learning using both features and labels
- **Unsupervised** Learning using features only
- Semi-supervised Learning Using some labels to label an unlabeled data set to increase the size of the available training dataset
- Reinforcement Learning

PRODEFREADERSWHITMSY.BUDG

Supervised Learning

n features

k labels

- Supervised ML uses both the features and the labels to train, validate, and test. typical Exoplanet tasks:
 - Regression problems:
 - given the planet/stellar parameters and composition >predict the observed spectrum
 - given the observed spectrum -> predict the planet parameters and composition
 - Categorization problem:
 - given an observation (transit spectrum) what kind of planet that is (giant, terrestrial; cloudy or not; water rich or poor; ...) as the training set is already split in categories.

Unsupervised Learning

n features

$\begin{cases} x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}; \\ x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(n)}; \\ \vdots & \vdots & \vdots \\ x_m^{(1)}, x_m^{(2)}, \dots, x_m^{(n)}; \end{cases}$

Build a model that maps {x} to {y}

Questions???

Why?

- You do not need labels.
- Getting labels is not easy.
- There is a lot of unlabeled data out there.
- First and last resort when you are clueless of what to do.

Common tasks:

- Clustering
- Outlier detection
- Dimensionality reduction
 - PCA
 - Manifold learning
 - Auto-encoders
- Feature engineering

Visualization and Unsupervised ML

- Unsupervised ML uses only the features to answer interesting questions.
 - What is the max/min values of my data?
 - What is the variability (standard deviation)?
 - What is the density of the distribution?
 - What **type of distribution** it is?
 - Are there any correlations?
 - Are there any **clusters**?
 - Are there any **unusual data points**?
 - What is the true **dimensionality** of the dataset?
 - How many free parameter I need to describe the data?
 - Is there any **symmetry** in the data?

Data Summary Statistics

Matchev, Matcheva, Roman, PSJ, v 3, id 205, 2022

Information Content-Correlations

HELA database

Correlation matrix of the 13 features (spectral bins) M_{λ} (λ =1...13). The matrix lists the Pearson correlation coefficient between any two features in the dataset. The information in the individual spectral bins is clearly **highly correlated**. This calls for **dimensionality reduction**.

Principal Component Analysis

Principal Component Analysis: the plot on the right shows the cumulative explained variance ratio as a function of the number of included PCA components. The first three PCA components alone contain more than **99.5** % of the variance in the data.

Matchev, Matcheva, Roman, PSJ, v 3, id 205, 2022 Principal Component Analysis

PCA 2D representation

HELA database

PCA 3D representation

Matchev, Matcheva, Roman, PSJ, v 3, id 205, 2022 • HELA database

-0.04

-0.10^{-0.05^{0.00} PCA²}

-10

-12

-0.04

-0.10^{-0.05^{0.00} PCA2}

 $PCA^{0.4}$ $I^{0.4}$ 0.6 0.8 10

-10

-12

 $PCA^{-0.4}$

3-D representation of the first 3 Principal Components

TRANSIT database (with M. Himes, J. Harrington, unpublished)

Color coding by temperature, T=500-2900K

Spectral classes of chemical regimes

- ✓ H_2 O branch
- ✓ NH_3 branch
- ✓ HCN branch
- ✓ Cloud branch

Distinct branch for each extinction

- ✓ Absorption due to distinct absorber
- ✓ Scattering
 - ✓ Grey clouds
 - ✓ Rayleigh scattering
- ✓ CIA (H_2-H_2, H_2-He)

PCA of Synthetic Spectra

• TRANSIT database (with M. Himes, J. Harrington, unpublished)

H₂O

Synthetic Database

- ✓ 100,000 spectra
- ✓ for WASP-12b like planets
- ✓ full forward radiative transfer model (TRANSIT)
- ✓ *100 atmospheric pressure layers,
- ✓ variable gravity , g.
- ✓ self consistent mean molecular mass, µ.

Manifold Learning: Swiss Roll

Dimensionality reduction method using non-linear transformations.

Manifold Learning with 1000 points, 10 neighbors

credit: https://parastoofalakaflaki.medium.com/manifold-learning-e8ca7b6df0f8 21

Non-linear dimensionality reduction

Isomap

Clustering

- Unsupervised learning (no labels).
- Methods based on data density estimation.
- Large number of methods.
- Most methods require to **specify** the number of clusters.
- Significant number of "hyper parameters" that needs to be finetuned.

<u>Original Data</u>

Clustered Data

credit: https://waterprogramming.wordpress.com/2022/03/16/clustering-basics-and-a-demonstration-in-clustering-infrastructure-pathways/

Zoo of clustering methods

credit: <u>https://scikit-learn.org/stable/modules/clustering.html</u>

Clustering

HELA database

We use a public database¹ of 100,000 synthetic atmospheres:

- Fixed parameters: gravity, mean molecular mass, planetary radius, star radius, reference pressure (WASP-12b)
- Scanned parameters:
 - ✓ Temperature: 500 2900 K
 - ✓ H_2O volume mixing ratio: $10^{-13} 1$
 - ✓ HCN volume mixing ratio: $10^{-13} 1$
 - ✓ NH₃ volume mixing ratio: $10^{-13} 1$
 - ✓ Cloud opacity: $10^{-13} 10^2$
- Noise floor of 50 ppm on the transit depth (WFC3-like).
- **Spectral range**: 0.838-1.666 μm in 13 bins.

We perform several **unsupervised learning** tasks:

- Summary statistics
- Clustering (see figures on the right)
- Dimensionality reduction
- Manifold learning

¹ Márquez-Neila P., Fisher C., Sznitman R., Heng K.,
 2018, Nature Astronomy, 2, 719
 https://github.com/exoclime/HELA

Matchev, Matcheva, Roman, PSJ, v 3, id 205, 2022

Results from K-means clustering of the synthetic atmospheres in the database

Anomaly Detection

- **Basic question:** Does a given observation belong to the same distribution as the others (inlier) or is it different (outlier)?
- Some possible reasons for outliers:
 - Measurement or input error
 - Data corruption
 - True outlier observation (discovery!)
- Anomaly detection methods alert you to the presence of anomalous data, but do not tell you what to do with it that is up to you.

Outlier versus Novelty Detection

• **Outlier detection:** useful when we have an idea what anomalies might look like.

Training data

Testing data

• Novelty detection: useful when we do not know what the potential anomalies look like.

Training data

Testing data

Novelty Detection using Ariel Data

Paper: motivation, approach, data preprocessing, method, results (Forestano et al. 2023)

- The Basic Questions:
 - Can we identify planets with unusual or unexpected chemical composition?
 - Can we spot alien life as we do not know it?
 - Can we identify **new physics**?
 - Can we spot **glitches** with the instrument?
- Can we detect anomalous spectra?

• Starting from the generic data base let's **reshape** it so that it fits our problem.

Spectra preselection

- A random scanning of the parameter space results in many unobservable transits or featureless spectra, which are not interesting.
- They can be removed by requiring a **minimum value for the feature height**
 - this cut is tied up to the **noise level**: large noise washes out small features
 - approximately 65,000 remaining spectra.

Defining "anomalous" atmospheres

- Since we do not know what types of surprises we can get, we want to train the model on normal samples only (white sheep) : "novelty detection"
- The **testing** is done on both **normal** and **anomalous** samples
- Anomalous: having an unexpected mystery absorber
 - Experiment 1: CH₄
- Normal: a mixture of the remaining four absorbers in the database, no mystery absorber
 - Experiment 1: CO₂, H₂O, NH₃, CO

Local Outlier Factor (LOF)

- Compares the **sample density** around a given point to the density around its neighbors
- Assigns an LOF score
 - small values (near zero) for normal samples
 - large values for anomalous samples
- The level of separation depends on the level of instrumental noise

ROC Curve

- A graph showing the **performance of a classifier** at all thresholds.
- Count the number of samples of each type to the right of the threshold

Fraction above Threshold

ROC curves for anomaly detection

Anomaly Detection Methods

Looking for a needle in a haystack!

Searching for bio-signatures in spectroscopic data

- ✓ Know your haystack!
 Understand the data!
- ✓ Where to look?
 Dimensionality Reduction.
- What is the most contrasting property of the hay?
 Principal Component Analysis.
- ✓ Separate the stack in smaller distinct piles.

Clustering and categorizing the data.

✓ Find the one that does not belong!
 Anomaly Detection

...The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" but **"That's funny..."**

Isaac Asimov