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Outline
• The	Role	of	ML	
• work	with	large	volume	of	data	
• high	dimensional	data	
• speed	up	the	simulation	models	

• ML	Approaches	
• Unsupervised	Learning		
• Supervised	Learning		
• Ariel	Data	Challenge	

• Searching	for	the	unexpected	
• anomaly	detection
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Transit	Transmission	Spectroscopy

Heng	et	al.	2017



Forward	Radiative	Transfer	Models

Observation

Inputs	(features) Outputs	(targets)

Planet T	(K) R R X

1 1300 1.8 1.6 10

2 650 0.9 1.4 10

3 960 1.9 2.3 10

4 1150 2.0 1.5 10

Planet M M M M

1 1.41 1.44 1.42 1.52

2 0.52 0.55 0.61 0.58

3 0.92 1.03 1.11 0.95

4 1.85 1.94 1.99 1.82

• Generate	a	training	database	of	spectra	M	by	scanning	over	the	input	parameters	for	the	
forward	model.

Analytical

RT	model:		
TauREx



Inverse	Problem:	parameter	retrievals

Retrieval	Model

Planet M M M M

1 1.41 1.44 1.42 1.52

2 0.52 0.55 0.61 0.58

3 0.92 1.03 1.11 0.95

4 1.85 1.94 1.99 1.82

Planet T	(K) R R X

1 1300 1.8 1.6 10

2 650 0.9 1.4 10

3 960 1.9 2.3 10

4 1150 2.0 1.5 10

Retrieval:		
TauREx

Inputs	(features) Outputs	(targets)

• The	Ariel	Data	challenge	is	ML	as	a	substitute	for	the	Bayesian	model:	Train	on	a	database	
of	solutions	from	TauREx	with	the	goal	of	reproducing	the	TauREx	predictions.	



Meet	the	DATA!
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• TRANSIT	database	(with	M.	Himes,	J.	Harrington	UCF)

•Ariel	2022	challenge	database		
(Changeat	and	Yip,	RASTI,	2023).

• HELA	database	(Márquez-Neila	P.	et	al.,	2018,	Nature,2,	719	)

We	use	a	public	database1	of	100,000	synthe6c	atmospheres	
created	with	an	analy%cal	formula:	
•  Fixed	parameters:	gravity,	mean	molecular	mass,		
planetary	radius,	star	radius,	reference	pressure	(WASP-12b)	
•  Scanned	parameters:	

!  Temperature:	500	–	2900	K	
!  H2O	volume	mixing	ra6o:	10-13	–	1	
!  HCN	volume	mixing	ra6o:	10-13	–	1	
!  NH3	volume	mixing	ra6o:	10-13	–	1	
!  Cloud	opacity:	10-13	–	102	

•  Noise	floor	of	50	ppm	on	the	transit	depth	(WFC3-like).		
•  Spectral	range:	0.838-1.666	µm	in	13	bins.	

We	use	full	forward		radia.ve	transfer	model	(TRANSIT)	with	
variable	gravity	,	g,	and	self	consistent	mean	molecular	mass,	µ.	
•  Fixed	parameters:	planetary	radius,	star	radius,	pressure	

grid	of	100	layers	
•  Scanned	parameters:	

!  Temperature:	500	–	2900	K	
!  H2O	volume	mixing	ra.o:	10-13	–	10-2	
!  HCN	volume	mixing	ra.o:	10-13	–	10-2	
!  NH3	volume	mixing	ra.o:	10-13	–	10-2	
!  Cloud	opacity:	10-13	–	102	

!  Rayleigh	ScaOering	and	CIA	
•  No	noise		
•  Spectral	range:	0.838-1.666	µm	in	13	bins	

Ariel	database	(TauRex)	with	variable	gravity	,	g	
•  Fixed	parameters:	pressure	grid,	mean	

molecular	mass,	µ	
•  Varying	parameters:	target	planet/star:	Rs,	

Rp,	Mp,	g,	Tp.	
•  Scanned	parameters:	

!  H2O	volume	mixing	raDo:	10-9	–	10-3	
!  CO2	volume	mixing	raDo:	10-9	–	10-4	
!  CH4	volume	mixing	raDo:	10-9	–	10-3	
!  CO	volume	mixing	raDo:	10-6	–	10-3	
!  NH3	volume	mixing	raDo:	10-9	–	10-4	
!  No	clouds	
!  Rayleigh	ScaPering	and	CIA	

•  Noise		
•  Spectral	range:	0.5-7.5	µm	in	52	bins	

You	can	make	your	own	database!	
• spectral	range,	resolution,	and	noise.	
• what	are	the	fixed/varying	
parameters(T,	R,	g,	m,	clouds,…)?	

• what	are	the	ranges?	
• what	type	of	sampling?	
• what	optical	processes	are	included?	
• what	are	the	physics	approximations?
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Ariel	database	(TauRex)	with	variable	gravity	,	g	
•  Fixed	parameters:	pressure	grid,	mean	

molecular	mass,	µ	
•  Varying	parameters:	target	planet/star:	Rs,	

Rp,	Mp,	g,	Tp.	
•  Scanned	parameters:	

!  H2O	volume	mixing	raDo:	10-9	–	10-3	
!  CO2	volume	mixing	raDo:	10-9	–	10-4	
!  CH4	volume	mixing	raDo:	10-9	–	10-3	
!  CO	volume	mixing	raDo:	10-6	–	10-3	
!  NH3	volume	mixing	raDo:	10-9	–	10-4	
!  No	clouds	
!  Rayleigh	ScaPering	and	CIA	

•  Noise		
•  Spectral	range:	0.5-7.5	µm	in	52	bins	

CH4 NH3

H2O CO2

CO

TRp

Mp

Rs TsMsDs

Dptp gp

Ariel	2023	Database



From	1D		spectrum	to		N-dimensions
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Each	spectrum	is	a	single	
point	in	N-dimensional	
spectral	space.



Supervised/Unsupervised	Learning
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(learned or postulated)

Transformation
Transformation on feature space:

g : xi ! x0i

Transformation is a symmetry if:

'(x0i ) ⌘ '(g(xi )) = '(xi )

Goal: Find transformations
g(xi ) which preserve the oracle '.

In physics, ' represents a
conserved quantity.

g '
Time Translation (T0) E

Rotation (Rij ) ~L
Lorentz (Kµ⌫) Tµ⌫

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 2 / 57
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Parameterization of Symmetry Transformations

Linear

x0 = (I+ ✏W) x (2)

I ⌘ identity matrix

W ⌘ n ⇥ n matrix to be
learned by our method

Figure: Visualization: SU(2) generators for a
single layer linear model using the L2-norm
oracle '(x) = |x|.

Non-Linear

x ! | {z }
NN whose parameters are

to be learned by our method

! x0 or
x0�x
✏

(3)

Figure: Visualization: Grid vector
transformation representation for a deep linear
layered model using the L1-norm oracle
'(x) = |x(1)|+ |x(2)|.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 3 / 57

• Supervised	Learning	-	using	both	features	and	
labels	

• Unsupervised	Learning	-	using	features	only	
• Semi-supervised	Learning	-	Using	some	labels	to	
label	an	unlabeled	data	set	to	increase	the	size	of	
the	available	training	dataset	

• Reinforcement	Learning		
• …

ML	algorithm	

Pl
an

et



Supervised	Learning
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Parameterization of Symmetry Transformations

Linear

x0 = (I+ ✏W) x (2)

I ⌘ identity matrix

W ⌘ n ⇥ n matrix to be
learned by our method

Figure: Visualization: SU(2) generators for a
single layer linear model using the L2-norm
oracle '(x) = |x|.

Non-Linear

x ! | {z }
NN whose parameters are

to be learned by our method

! x0 or
x0�x
✏

(3)

Figure: Visualization: Grid vector
transformation representation for a deep linear
layered model using the L1-norm oracle
'(x) = |x(1)|+ |x(2)|.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 3 / 57
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Build	a	model	that	maps	{x}	to	{y}

• Supervised	ML	uses	both	the	features	and	the	labels	to	train,	validate,	and	test.	typical	
Exoplanet	tasks:		
• Regression	problems:		

• given	the	planet/stellar		parameters	and	composition	-	>predict	the	observed	
spectrum	

• given	the	observed	spectrum	->	predict	the	planet	parameters	and	composition	
• Categorization	problem:	

• given	an	observation	(transit	spectrum)	what	kind	of	planet	that	is	(giant,	
terrestrial;	cloudy	or	not;	water	rich	or	poor;	…)	as	the	training	set	is	already	
split	in	categories.	



Unsupervised	Learning
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Build	a	model	that	maps	{x}	to	{y}

Questions???	

Common	tasks:		
• Clustering	
• Outlier	detection	
• Dimensionality	reduction	

• PCA	
• Manifold	learning	
• Auto-encoders	

• Feature	engineering

Why?	
• You	do	not	need	labels.	
• Getting	labels	is	not	easy.	
• There	is	a	lot	of	unlabeled	
data	out	there.	

• First	and	last	resort	when	you	
are	clueless	of	what	to	do.



Visualization	and	Unsupervised	ML
• Unsupervised	ML	uses	only	the	features	

to	answer	interesting	questions.	
• What	is	the	max/min	values	of	my	
data?	

• What	is	the	variability	(standard	
deviation)?		

• What	is	the	density	of	the	
distribution?	

• What	type	of	distribution	it	is?	
• Are	there	any	correlations?	
• Are	there	any	clusters?	
• Are	there	any	unusual	data	points?	
• What	is	the	true	dimensionality	of	
the	dataset?	

• How	many	free	parameter	I	need	to	
describe	the	data?	

• Is	there	any	symmetry	in	the	data?
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Data	Summary	Sta*s*cs	

2-D	sca(er	plots	of	the	
Standard	Devia*on	and	the	
Spectral	Average	of	the	13-
dimen7onal	spectral	database.	
The	points	are	color	coded	
using	the	temperature,	T	or	the	
composi7on,	X.	The	black	star	*	
marks	the	posi7on	of	
WASP-12b		
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• HELA	database



Information	Content-Correlations

Correlation	matrix	of	the	13	features	(spectral	bins)	Mλ (λ=1…13).	The		matrix	lists	the	
Pearson	correlation	coefficient	between	any	two	features	in	the	dataset.	The	information	in	
the	individual	spectral	bins	is	clearly	highly	correlated.	This	calls	for	dimensionality	
reduction.

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022

• HELA	database



Principal	Component	Analysis	

Principal	Component	Analysis:	the	plot	on	the	right	shows	the	cumulative	explained	
variance	ratio	as	a	function	of	the	number	of	included	PCA	components.		The	first	
three	PCA	components	alone	contain	more	than	99.5	%	of	the	variance	in	the	data.

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022

• HELA	database

https://miro.medium.com/v2/resize:fit:1400/1*37a_i1t1tDxDYT3ZI6Yn8w.gif
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Principal	Component	Analysis	

2-D	sca(er	plots	of	the	first	two	
Principal	Components	PCA	1	and	
PCA	2	of	the	13-dimen;onal	
spectral	database.	The	points	are	
color	coded	using	the	
temperature,	T,	or	the	
composi;on,	X.	The	black	star	*	
marks	the	posi;on	of	WASP-	12b		
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• HELA	database

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022
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PCA	2D	representa.on	

2-D	sca(er	plots	of	the	second	
and		the	third	Principal	
Components,	PCA	2	and	PCA	3	
of	the	13-dimen:onal	spectral	
database.	The	points	are	color	
coded	using	the	temperature,	
T,	or	the	composi:on,	X.	The	
black	star	*	marks	the	posi:on	
of	WASP-	12b		
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T H2O HCN

NH3 clouds

• HELA	database

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022
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PCA	3D	representa.on	

H2O	

HCN	

Clouds	

NH3	

• HELA	databaseMatchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022



3-D	representation	of	the	first	3	Principal	
Components

Spectral	classes	of	chemical	regimes	
!
✓ H2O	branch	
✓ NH3	branch	
✓ HCN	branch	
✓ Cloud	branch

Distinct	branch		for	each	extinction	
!
✓ Absorption	due	to	distinct	absorber	
✓ Scattering		

✓ Grey	clouds	
✓ Rayleigh	scattering	

✓ CIA	(H2-H2,	H2-He)Color	coding	by	temperature,	T=500-2900K

• TRANSIT	database	(with	M.	Himes,	J.	Harrington,	unpublished)
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	PCA	of	Synthe-c	Spectra	

Synthe-c	Database			
	
!  	100,000	spectra		
!  	for	WASP-12b	like	planets	
!  full	forward		radia<ve	

transfer	model	(TRANSIT)		
!  *100	atmospheric	pressure	

layers,	
!  variable	gravity	,	g.	
!  	self	consistent	mean	

molecular	mass,	µ.		

PC1	PC2	

PC3	

PC1	PC2	

PC3	

PC1	PC2	

PC3	

PC1	PC2	

PC3	

NH3	

H2O	 HCN	

Clouds	

• TRANSIT	database	(with	M.	Himes,	J.	Harrington,	unpublished)



Manifold	Learning:	Swiss	Roll

21credit:	https://parastoofalakaflaki.medium.com/manifold-learning-e8ca7b6df0f8

Dimensionality	reduction	method	using	non-linear	transformations.
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Non-linear	dimensionality	reduc2on	

2-D	sca(er	plots	of	the	first	
and	second	Isomap	
Components,	of	the	13-
dimen9onal	spectral	database.	
The	points	are	color	coded	
using	the	temperature,	T,	or	
the	composi9on,	X.	 Is
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Isomap	• HELA	database

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022



Clustering

23
credit:	https://waterprogramming.wordpress.com/2022/03/16/clustering-basics-and-a-demonstration-in-clustering-infrastructure-pathways/

• Unsupervised	learning	(no	labels).	
• Methods	based	on	data	density	
estimation.	

• Large	number	of	methods.	
• Most	methods	require	to	specify	
the	number	of	clusters.	

• Significant	number	of	“hyper	
parameters”	that	needs	to	be	fine-
tuned.



Zoo	of	clustering	methods

24credit:	https://scikit-learn.org/stable/modules/clustering.html



25

Unsupervised	Learning		

Results	from	K-means	
clustering	of	the	synthe2c	
atmospheres	in	the		database	

We	use	a	public	database1	of	100,000	synthe2c	atmospheres:	
•  Fixed	parameters:	gravity,	mean	molecular	mass,		
planetary	radius,	star	radius,	reference	pressure	(WASP-12b)	
•  Scanned	parameters:	

!  Temperature:	500	–	2900	K	
!  H2O	volume	mixing	ra2o:	10-13	–	1	
!  HCN	volume	mixing	ra2o:	10-13	–	1	
!  NH3	volume	mixing	ra2o:	10-13	–	1	
!  Cloud	opacity:	10-13	–	102	

•  Noise	floor	of	50	ppm	on	the	transit	depth	(WFC3-like).		
•  Spectral	range:	0.838-1.666	µm	in	13	bins.	

1	Márquez-Neila	P.,	Fisher	C.,	Sznitman	R.,	Heng	K.,	
2018,	Nature	Astronomy,2,	719		
hZps://github.com/exoclime/HELA	

We	perform	several	unsupervised	learning	tasks:		
•  Summary	sta2s2cs		
•  Clustering	(see	figures	on	the	right)	
•  Dimensionality	reduc2on	
•  Manifold	learning	

• HELA	database
Clustering

Matchev,	Matcheva,	Roman,	PSJ,	v	3,	id	205,	2022



Anomaly	Detection
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• Basic	question:	Does	a	given	observation	belong	to	the	same	distribution	as	the	
others	(inlier)	or	is	it	different	(outlier)?	

• Some	possible	reasons	for	outliers:	
• Measurement	or	input	error	
• Data	corruption	
• True	outlier	observation	(discovery!)	

• Anomaly	detection	methods	alert	you	to	the	presence	of	anomalous	data,	but	do	
not	tell	you	what	to	do	with	it	-	that	is	up	to	you.

Normal	samples



Outlier	versus	Novelty	Detection
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• Outlier	detection:	useful	when	we	have	an	idea	what	anomalies	might	look	like.

• Novelty	detection:	useful	when	we	do	not	know	what	the	potential	anomalies	look	like.

Training	data

Training	data

Testing	data

Testing	data



Novelty	Detection	using	Ariel	Data
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Paper:	motivation,	approach,	data	preprocessing,	method,	results

• The	Basic	Questions:	
• Can	we	identify	planets	with	
unusual	or	unexpected	chemical	
composition?	

• Can	we	spot	alien	life	as	we	do	
not	know	it?	

• Can	we	identify	new	physics?	
• Can	we	spot	glitches	with	the	
instrument?	

• Can	we	detect	anomalous	spectra?

• Starting	from	the	generic	data	base	let’s	reshape	it	so	that	it	fits	our	problem.

(Forestano	et	al.	2023)	



Spectra	preselection
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• A	random	scanning	of	the	parameter	space	results	in	many	unobservable	transits	or	
featureless	spectra,	which	are	not	interesting.	

• They	can	be	removed	by	requiring	a	minimum	value	for	the	feature	height	
• this	cut	is	tied	up	to	the	noise	level:	large	noise	washes	out	small	features	
• approximately	65,000	remaining	spectra.

REMOVE

KEEP



Defining	“anomalous”	atmospheres
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• Since	we	do	not	know	what	types	of	surprises	we	can	get,	we	want	to	train	the	model	on	
normal	samples	only	(white	sheep)	:	“novelty	detection”	

• The	testing	is	done	on	both	normal	and	anomalous	samples	
• Anomalous:	having	an	unexpected	mystery	absorber	

• Experiment	1:	CH4	

• Normal:	a	mixture	of	the	remaining	four	absorbers	in	the	database,	no	mystery	absorber	
• Experiment	1:	CO2,	H2O,	NH3,	CO

NormalNormal Anomalous Anomalous

Log(Mixing	ratio	of	mystery	absorber)Log(Relative	fraction	of	mystery	absorber)



Local	Outlier	Factor	(LOF)
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• Compares	the	sample	density	around	a	given	point	to	the	
density	around	its	neighbors	

• Assigns	an	LOF	score		
• small	values	(near	zero)	for	normal	samples	
• large	values	for	anomalous	samples	

• The	level	of	separation	depends	on	the	level	of	instrumental	
noise

CH4



ROC	Curve
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• A	graph	showing	the	performance	of	a	classifier	at	all	thresholds.	
• Count	the	number	of	samples	of	each	type	to	the	right	of	the	threshold	

Normal	
Samples

Anomalous	
Samples

Fraction	above	Threshold
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Ideal	classifier
We	want	the	ROC	curve		
to	be	as	close	as	possible		
to	this	point



ROC	curves	for	anomaly	detection
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CH4 NH3

H2O CO2



Anomaly	Detection	Methods
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Looking	for	a	needle	in	a	haystack!	
Searching	for	bio-signatures	in	spectroscopic	data	

!  Where	to	look?		
Dimensionality	Reduc8on.	

!  What	is	the	most	contras9ng	property	
of	the	hay?	

					Principal	Component	Analysis.	

!  Separate	the	stack	in	smaller	dis9nct	
piles.		

					Clustering	and	categorizing	the	data.	

!  Find	the	one	that	does	not	belong!	
Anomaly	Detec8on	

!  Know	your	haystack!	
Understand	the	data!	
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…The	most	exciting	phrase	to	hear	in	science,	the	
one	that	heralds	new	discoveries,	is	not	“Eureka!”	
but	“That’s	funny…”

Isaac	Asimov


