
Jérémy Leconte

What controls 
the temperature 

of planetary atmospheres?









Jérémy Leconte

What controls 
the temperature 

of planetary atmospheres?



Zeroth order : Insolation



Zeroth order : Equilibrium temperature
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Is the equilibrium temperature 
equal to 

the average temperature?



Will the average temperature be 
higher or lower 

than the equilibrium temperature?



Average temperature : systematic biases

σTeq = ((1 − A)F⋆μ⋆)1/4

σT̄eq = ⟨(1 − A)F⋆μ⋆⟩1/4

1D point of view 3D point of view 

Same thing for time averaging!!!

T1D ∝ T̄eq

T1D ∝ ⟨μ⋆⟩1/4

T̄3D ∝ ⟨Teq⟩
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Average temperature : systematic biases

Same thing for time averaging!!!
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Average temperature : systematic biases

T̄1d > T̄3d

T̄s ⇡ 0.57 T̄equ

Inhomogeneous insolation
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Extreme case of an 
airless synchronous planet

Leconte et al. (2013)



Can the average temperature be 
higher 

than the equilibrium temperature?



Radiative transfer 101
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Jérémy Leconte1

1Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-

Hilaire, 33615 Pessac, France.

We derive the two-stream equations under various assumptions and their solutions. We try

to stick with the notations from Toon et al.1 where you can found additional information.
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1 Definitions

Let In be the radiative spectral intensity which satisfies the following equation:

µ ∂ In(µ,f)
∂ tn

= In(µ,f)�Sn(µ,f)�
w0

4p

Z 2p

0

Z 1

0
Pn(µ,µ 0,f ,f 0)In(µ 0,f 0)df 0dµ 0, (1)

where µ is the cosine of the angle between the direction at which the intensity is observed and
the outward surface normal and f is the azimuthal angle. tn is the optical depth measured along
the zenith direction beginning at the top of the atmosphere. Sn is the source function and w0 and
Pn are the single scattering albedo and the scattering phase function.

We define upward/downward intensities (the overbar shows that the intensity has been inte-
grated over azimuth angles) and fluxes as:

Ī±n (µ) =
Z 2p

0
In(±µ,f)df (2)

and

F±
n =

Z 1

0
µ Ī±n (µ)dµ. (3)

The net flux and mean intensity are given by

Fnet =
Z

µIndW = F+
n �F�

n , (4)

and

J =
1
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Z
IndW =

Ī+n + Ī�n
4p

. (5)

2 2-stream equations

Following Meador and Weaver2, we say that a radiative transfer approximation can be called a
two-stream approximation if it leads to equations for the fluxes in each atmospheric layer that
are of the form (noting that the spectral subscript is dropped to leave the layer subscript, but all
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Emission

dτ = κν
dp
g

Optical depth

Absorption Scattering



First order : Radiative Equilibrium
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Absorption Emission Scattering
★ Local Thermal Eq. (LTE) 

implies: 
★ (T) 

➡Can compute I from T 

★Radiative equilibrium: 
★Absorption = Emission 

(once averaged over all 
directions) 

★Allows iteration over T

Sν = Bν



The 2-stream approximation
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★ Main Assumptions: 
★ Plane parallel 
★ Intensity described by upward and 

downward fluxes (  and ) 
➡ Usable in a numerical model 

(like exo_k) 
★ Additional assumptions 

★ Intensity constant over 
hemispheres 

★ No scattering 
★ No visible absorption 
★ gray absorber 

➡ Analytical solutions

F+ F− ∂F+

∂τ
= 2F+ − 2πB

∂F−

∂τ
= 2F− + 2πB

T(τ)4 = T4
eq ( 1

2
+ τ)

See Guillot (2010) for more detailed models



Greenhouse effect in a gray atmosphere

τ ≈ 1

Parameters for K2-18b

Photons escape 
to space

Photons diffuse 
upward



Thermal structure with real gases

★ Stratosphere is colder: 
★ Gas has opacity windows where 

thermal radiation can escape 
without heating the stratosphere 

★ Troposphere is hotter 
★ Opacity increases with depth 

(collisional broadening) 
★ Thermal gradient needs to steepen 

to transport the flux upward

How is it linked to observables?



Emission for real gas atmospheres

★ We see the  level 
★ The more transparent the gas, the deeper we see 
★ The deeper the hotter (usually) 
★ Higher fluxes in transparent windows (and vice versa)

τ ≈ 1



Transmission for real gas atmospheres

★ The atmosphere will absorb (hide) everything below the  level 
★ The more opaque the gas, the higher the atmosphere absorbs 
★ Higher transit depth in opaque bands (and vice versa)

τ ≈ 1

A&A 623, A161 (2019)
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Fig. 1. Schematic of the geometry of a light ray crossing the atmo-
sphere. The inner circle is the arbitrary reference surface of the planet of
radius Rp. The lighter-grey region is the atmosphere. The distance from
the centre of the planet is r=Rp + z. A light ray is defined by its distance
of closest approach to the centre of the planet, ⇢, and the corresponding
tangential altitude zt = ⇢ � Rp. The direction of the light ray defines the
x direction. As we further discuss the extent of the limb along the ray, we
introduce xlimb so that the absorption outside the [�xlimb, xlimb] segment
is negligible in determining the transit radius, and the corresponding
limb opening angle  .

Climate Model (GCM) to identify the region effectively probed
by the retrieval of secondary eclipse data.

On the transmission spectroscopy side, the study of the hor-
izontal atmospheric heterogeneities have focused on the effect
of clouds, with Line & Parmentier (2016) showing that the pres-
ence of clouds on only parts of the limb could mimic a high mean
molecular weight atmosphere. Yet, these latter authors produced
their forward spectra by simply averaging two 1D models so that
only a limited kind of heterogeneity could be investigated. To go
further Charnay et al. (2015), Way et al. (2017), Parmentier et al.
(2018), and Lines et al. (2018), among others, produced transit
spectra from 3D atmospheric simulations. However, because of
the difficult geometry, they still relied on a 1D radiative-transfer
transmission code that is either fed an average limb profile from
a 3D simulation or that performs spectra of all the columns at
the terminator of the model – that they assume to be equiva-
lent to the limb plane – before averaging. Even if the second
approach – that we hereafter refer to as limb-averaged or (1+1)D
method – does capture the spatial variations of the atmosphere
along the terminator, it completely neglects horizontal variations
across it. Indeed, as the ray goes from the dayside to the night-
side before coming to the observer, it crosses one of the most
steeply changing regions of the atmosphere: the transition from
day to night side. The effect of such a thermo-compositional
transition within the limb on retrieved parameters is unknown
at present. Indeed, although various authors have also devel-
oped a fully consistent transmission model able to predict such
effects, these authors have not tried to retrieve physical param-
eters from their forward spectra. Fortney et al. (2010), Burrows
et al. (2010), and Dobbs-Dixon et al. (2012), for example, focused
on the potential differences between the east and west limbs,
while Miller-Ricci Kempton & Rauscher (2012) and Showman
et al. (2013) mainly looked at the effect of the doppler shifting
by winds on high-resolution spectra.

2. Simple estimate of the maximum width of the
limb and goals of the study

The day–night transition would not be a problem if the region
probed in transmission were infinitely thin. We would just see a
slice of the atmosphere. But in fact, and quite counter-intuitively,

the width of this region – which is our definition of the limb1 –
is much larger on some planets than generally expected. There-
fore, the transit spectrum encodes a much wider diversity of
temperatures and compositions.

Although the effect of this larger extent of the limb is demon-
strated below a posteriori by the results of our 3D transit model,
let us here try to give simple arguments to estimate how different
planets can be affected. In other words, how wide can we expect
the limb to be on any given planet?

Of course, the problem in providing such a simple estimate
is that the region that contributes to the transit spectrum does
not only depend on the global parameters of the planet, but also
on the precise chemical-physical conditions in the atmosphere
and how they vary spatially, as is demonstrated below. There is
therefore a certain degree of arbitrariness if one wants to come
up with a simple general estimate. For this reason, we first use
a simple geometrical argument. The advantage of this is that it
allows us to identify the key dimensionless parameter controlling
the limb width. In Appendix A we derive a model of a more
specific case of chemical inhomogeneity and show that the two
approaches indeed yield similar results.

Let us consider a light ray passing through the limb as shown
in Fig. 1. Estimating the width of the limb comes down to the
computation of the maximum distance from the limb plane, xlimb,
at which the atmosphere still measurably affects the optical depth
along all the observed rays, and especially the deepest one. The
choice we have to make here is the highest pressure probed in
transit (Pbot, that we assume to define the planetary radius Rp)
and the lowest pressure at which the atmosphere is still able to
significantly affect the transmission of a given ray (Ptop). Then
the width of the limb is given by

 ⌘ 2 arccos
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!
. (1)

Due to the fact that, in an isothermal atmosphere with an
atmospheric scale height at the surface equal to H and a varying
gravity, the hypsometric relation writes
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we get
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The first important result is that we see that the important
dimensionless quantity in our problem is the ratio of the scale
height to the planetary radius. The higher this parameter, the
larger the curvature effects in the atmosphere. This parameter
appears often in the following analyses. We also directly see that
the larger the pressure range probed, the wider the limb. Many
models predict that the lowest levels probed in transit are around
100 mb in the visible/near infrared. On the other hand, Kreidberg
et al. (2014) showed that in order to explain the flat spec-
trum of GJ 1214 b, an opaque aerosol deck is needed as high as
10�3–10�2 mb, showing that absorbers at such altitudes can
indeed still affect the transit spectrum.
1 The limb, as defined here, should not be confused with either (i) the
limb plane, which is the plane perpendicular to the observer’s line of
sight passing through the planet centre, or (ii) the terminator, which is
also a plane passing through the planet centre, but which is perpendicu-
lar to the star–planet axis. The latter two are confounded only when the
star, planet, and observer are aligned.
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Transmission for real gas atmospheres

★ The atmosphere will absorb (hide) everything below the  level 
★ The more opaque the gas, the higher the atmosphere absorbs 
★ Higher transit depth in opaque bands (and vice versa)

τ ≈ 1



Thermal structure with real gases

What are we forgetting?
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Net transport of heat upward
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Thermal structure with convection


