What controls the temperature of planetary atmospheres?

Jérémy Leconte

What controls the temperature of planetary atmospheres?

Jérémy Leconte

Zeroth order : Insolation

SOLAR SYSTEM

Mean temperature is the average temperature over the whole surface of the rocky planets: Mercury, Venus, Earth. Mars, and Pluto. For the gas giants this is the average temperature at the 1-bar pressure level in the atmosphere, which is equal to the atmospheric pressure at sea level on Earth.

Fianatis nut shown to scale

Zeroth order : Equilibrium temperature

Is the equilibrium temperature equal to the average temperature?

Will the average temperature be higher or lower than the equilibrium temperature?

Average temperature : systematic biases

 $\sigma T_{eq} = \left((1 - A) F_{\star} \mu_{\star} \right)^{1/4}$ $\sigma \bar{T}_{eq} = \langle (1 - A) F_{\star} \mu_{\star} \rangle^{1/4}$

Same thing for time averaging!!!

Average temperature : systematic biases

Same thing for time averaging!!!

Average temperature : systematic biases

Can the average temperature be higher than the equilibrium temperature?

Radiative transfer 101

First order : Radiative Equilibrium

The 2-stream approximation

$$\mu \frac{\partial I_{\nu}(\mu,\phi)}{\partial \tau_{\nu}} = I_{\nu}(\mu,\phi) - S_{\nu}(\mu,\phi) - \frac{\omega_0}{4\pi} \int_0^{2\pi} \int_0^1 P_{\nu}(\mu,\mu',\phi,\phi') I_{\nu}(\mu',\phi') d\phi' d\mu'$$

★ Main Assumptions:

★ Plane parallel

- ★ Intensity described by upward and downward fluxes (F^+ and F^-)
 - Usable in a numerical model (like exo_k)
- \star Additional assumptions
 - ★ Intensity constant over hemispheres
 - ★ No scattering
 - ★ No visible absorption
 - ★ gray absorber
 - Analytical solutions

$$\frac{\partial F^+}{\partial \tau} = 2F^+ - 2\pi B$$
$$\frac{\partial F^-}{\partial \tau} = 2F^- + 2\pi B$$
$$T(\tau)^4 = T_{eq}^4 \left(\frac{1}{2} + \tau\right)$$

See Guillot (2010) for more detailed models

Greenhouse effect in a gray atmosphere

Thermal structure with real gases

★ Stratosphere is colder:

- ★ Gas has opacity windows where thermal radiation can escape without heating the stratosphere
- ★ Troposphere is hotter
 - ★ Opacity increases with depth (collisional broadening)
 - ★ Thermal gradient needs to steepen to transport the flux upward

How is it linked to observables?

Emission for real gas atmospheres

- **★** We see the $\tau \approx 1$ level
 - ★ The more transparent the gas, the deeper we see
 - ★ The deeper the hotter (usually)
 - ★ Higher fluxes in transparent windows (and vice versa)

Transmission for real gas atmospheres

★ The atmosphere will absorb (hide) everything below the τ ≈ 1 level
★ The more opaque the gas, the higher the atmosphere absorbs
★ Higher transit depth in opaque bands (and vice versa)

Transmission for real gas atmospheres

★ The atmosphere will absorb (hide) everything below the τ ≈ 1 level
★ The more opaque the gas, the higher the atmosphere absorbs
★ Higher transit depth in opaque bands (and vice versa)

Thermal structure with real gases

What are we forgetting?

Net transport of heat upward

Thermal structure with convection

