Observations des atmosphères d'exoplanètes par les missions spatiales

About composition and density

- Densities and distances of objects in solar system supports this condensation the
- Rocky planets : 3-6 $\mathrm{g} \mathrm{cm}^{-3}$
=> mostly rocks and metals.
- Gazeous planets: 1-2 $\mathrm{g} \mathrm{cm}^{-3}$
=> Rocky-core, ices and gazes
- Inner belt asteroids: contains metals and rocks
- Outer main belt, KBOs: less metals, more ices

Extrasolar planet detection

Sept 10 2022, 5168 planets / 3812 planetary systems / 835 multiple planet systems

Astrometry (17 objects, 6 planets ??+53 GAIA candidates)
Radial Velocity (1005 planets in 747 systems, 177 multiple planet systems)
Transit (3618 planets in 2734 systems, 576 multiple planet systems)
Microlensing (215 planets in 195 systems, 710 multiple planet systems)
Direct detection (213 planets in 125 systems, 8 multiple planet systems)

Planets are ubiquitous

The transit technique

Only planets closed to ~ 90 deg inclinaison
Transit probability $\mathcal{P}_{\operatorname{tr}}=\frac{R_{*}+R_{\mathrm{p}}}{a\left(1-e^{2}\right)} \simeq R_{*} / a$

10 \% probability for a planet at 0.05 AU around a solar like star

Transit depth $\Delta F / F \simeq R_{p}^{2} / R_{*}^{2}$
Jupiter : 1 \% depth Earth: 0.01 \% depth

transit and occultations

Native Apps

Executables (64-bit and 32-bit) for Windows and (64-biffor Macintosh computers are available for all of our older projects (NAAP, ClassAction, ¿Zanking Tasks). The appropriate package for your (or your student's) computer sysies myst ye downloaded and installed locally. Note that these are actual applications that runipyer sedive OS and their longevity depends only upon your OS. There is no similar viable solution $4 d r$ Chromebooks.

Note that every simulation available in the past on this site is contained in either the ClassAction or NAAP Labs native app. (In ClassAction look under the Animations tab.) The following guide to content is provided to assist you in navigating. Student guides and demonstration guides can be found on the NAAP Resources page.

Windows Executables (for 64-bit machines, what most people want)

ClassAction - v2.3.msi	97.4 MB	January 30, 2020
NAAP Labs - v1.1.msi	22.4 MB	January 30, 2020
Interactives - v1.1.msi	46.7 MB	January 30, 2020

MacOS Executables

| ClassAction - v2.3.pkg | 97.1 MB |
| :--- | :--- | January 30, 2020

HD209458b transiting hot Jupiter in 1999

Observations du sol

Charbonneau et al. (1999)

Observations spatiale HST

Charbonneau et al. (2000)

Kepler

BY THE NUMBERS

O P YEARS IN - 0 SPACE

- MISSIONS - COMPLETED

2. 4 - 总 FUEL

($)$

8) se science dATA collected

61 SUPERNOVAE DOCUMENTED

FROM EARABS stiges of Explosism

9 (9) ScIEMTIFIC
PAPERS
PUBEISHED
732,128
COMMANDS
EXECUTED

As of October 24, 2018

Kepler Planet Candidates

 January 2014

Mass radius relations and isodensity curves with firsdt small planets

Histogram of planet radii, 2 peaks, super-Earth and Mini-Neptune

Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days.

Lightly shaded regions encompass our definitions of "super-Earths" (light red) and "sub-Neptunes" (light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by uncertainties on the planet radii measurements.

Classification according to density

0.1

1
10
100
1,000

Ternary diagrams

- $A+B+C=100 \%$
- How to plot the 3 variables together

Example of reading the figure

GJ1214b, 6.55 Mearth
Calculating different models $\mathrm{H}-\mathrm{He}, \mathrm{H} 2 \mathrm{O}$, Earth like nucleus fractions.
Isocurves for Radiu 2.5, 3, ..., 10, 12, 15 Rearth

Valencia, 2013

Ternary Diagrams for GJ 1214b and Kepler11e. These triangular diagrams relate the composition in terms of earth-like nucleus fraction, water+ices fraction, and H / He fraction to total mass, to the radius for a specific planetary mass. Each vertex corresponds to 100%, and the opposite side to 0% of a particular component. The color bar shows the radius in terms of Earth-radii, and the grey lines are the isoradius curves labeled in terms of Earth-radii. The collection of ternary diagrams for a range of planetary masses forms a triangular prism. The black band shows the compositions constrained by data for GJ 1214b for a grain-free envelope (top left), and a grainy envelope (bottom right), and Kepler-11e for a grain free envelope (top right) as projected onto the planetary mass MMM from the ternary diagrams at $M+\Delta M M+$ Delta $M M+\Delta M$ and $M-\Delta M M$-Delta $M M-\Delta M$ (where ΔM Delta $M \Delta M$ are the uncertainty values taken from the observational data).

Histogram of planet radii, 2 peaks, super-Earth and Mini-Neptune

Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days.

Lightly shaded regions encompass our definitions of "super-Earths" (light red) and "sub-Neptunes" (light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by uncertainties on the planet radii measurements.

A fabulous diversity in the exoplanet zoo Mass and Radius are not enough

5 Super Earth / Mini Neptunes in Kepler 11. Very different atmospheres !
(Lissauer et al. 2011, Valencia et al., 2013)

$50 \%\left(\mathrm{H}_{2} \mathrm{O}+\right.$ ices $)+50 \% \mathrm{H}-\mathrm{He}$

Transit depth:

$$
\delta_{t r a}=\left(\frac{R_{p}}{R_{\star}}\right)^{2}
$$

Occultation depth:

$$
\begin{aligned}
\delta_{o c c}= & \frac{I_{p}}{I_{\star}}\left(\frac{R_{p}}{R_{\star}}\right)^{2} \\
&
\end{aligned}
$$

Flux ratio day side of the planet / star

At different wavelength, because of different absorbing molecules-> different effective radius

Scale height in an atmosphere

$$
P(z)=P\left(z_{0}\right) \exp \left(-\frac{Z-Z}{H}\right)
$$

Pressure falls off exponentially with height in atmosphere with uniform temperature.
$H=\left(\frac{R T}{M g}\right)$ has the dimension of distance and is called, the scale height.
M is the mean molecular mass, $2.3 \mathrm{~g} / \mathrm{MOL}$ for hot Jupiter, $28 \mathrm{~g} / \mathrm{MOL}$ for Earth

Atmosphere of gazeous planets more extended than Earth like!

I) Transit

Spectroscopy

Effect of mean molecular weight

- The expected depth of the absorption features in a haze-free atmosphere is proportionalto the atmospheric scale height

Variation of transit depth:
$\Delta \delta_{t r a}=\frac{\pi\left(R_{p}+N_{H} H\right)^{2}}{\pi R_{\star}{ }^{2}}-\frac{\pi R_{p}{ }^{2}}{\pi R_{\star}{ }^{2}} \quad \approx 2 N_{H} \delta_{t r a}\left(\frac{H}{R_{p}}\right)$
Scale height: $\boldsymbol{H}=\frac{\boldsymbol{R} \boldsymbol{T}}{\boldsymbol{M g}}$; Number of scale heights: $\boldsymbol{N}_{\boldsymbol{H}} \approx 7$ (for low resolution)
\rightarrow Transit spectroscopy easier for high scale height (e.g. hot giant planets)

I) Transit

Spectroscopy

Effect of mean molecular weight

$M=$ mean mass of one mol of atmospheric particles = $0.029 \mathrm{~kg} / \mathrm{mol}$ for Earth
$T=$ mean atmospheric temperature in kelvins $=250 \mathrm{~K}$ for Earth

Variation of transit depth:

$\Delta \delta_{t r a}=\frac{\pi\left(R_{p}+N_{H} H\right)^{2}}{\pi R_{\star}{ }^{2}}-\frac{\pi R_{p}{ }^{2}}{\pi R_{\star}{ }^{2}} \quad \approx 2 N_{H} \delta_{t r a}\left(\frac{H}{R_{p}}\right)$
Scale height: $\boldsymbol{H}=\frac{\boldsymbol{R} \boldsymbol{T}}{\boldsymbol{M g}}$; Number of scale heights: $\boldsymbol{N}_{\boldsymbol{H}} \approx \mathbf{7}$ (for low resolution)
$\mathrm{R}=$ Molar gas constant, units of energy per temperature increment per mole, meaning Avogadro constant multiplied by the Boltzmann constant k

For an Sun-like star:

- Hot Jupiter ($T=1300 \mathrm{~K}, g=25 \mathrm{~m} \mathrm{~s}^{-2}, M=2.3 \mathrm{~g} / \mathrm{mol}$): $\delta_{\text {tra }} \approx 0.01, \Delta \delta_{\text {tra }} \approx 4.10^{-4}$
- Earth-like planet ($\left.T=280 \mathrm{~K}, g=10 \mathrm{~m} \mathrm{~s}^{-2}, M=28 \mathrm{~g} / \mathrm{mol}\right): \delta_{\text {tra }} \approx 10^{-4}, \Delta \delta_{\text {tra }} \approx 2.10^{-6}$

The Sun's planets are cold

Some key O, C, N, S molecules are not in gas form

Warm/hot exoplanets

O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM

There pointing to the presence of vegetation on Mars. PhotoThere has long been evidence phe Lowell Observatory have for decades shomer a wave of taken by E. C. Sliphensity of the dark regions. Every (1). In addition to the sonal variation of the intensity regions toward the equa that were never dark have bedarkening spreads from the polar-systematic changes; a blended into the desert regions. seasonal variation there are non-s have become light and occurred in 1954 when an area come dark, and a few dark areas A striking case of the app longitude and 20° latoing development for many yeatory during 580,000 square miles has, however, been undergolng Harvard College observator Mars (3). in which it is situate the 61-inch telescope oresence of organic molecules on Mars (he renance

The author using the a new test for the presen at 3.5μ as a result of this band was the 1956 opposition made a strong absorption bands in the plants tested, atoms attachOrganic molecules possess bonds. It was found that in between a pair of hydrogen of their carbon-hydrogen result of interaction double, most likely atom, as occurs in paraindicated the presenity of the absorption. ed to the same carbon the 1956 observations indoubt as to the reality not ascertained in

The results of Mars, but they left some douced the absorption were not ascer ment and Mars which produced Furthermore, the regions opposition the test was made agad. this work. At the 1958 opposit the band were established. the reality and distribution

Detection of 3 molecular bands in 1956...

,orm from Earth atmosphere...
Deuterium and and
get four line 1 lists right.

Figure 2. The spectri of drazonis ath Symia Msjor ofter division by the solkr spectruk, The dashed portion of the curre
in the region through atrocg pethane and water-vspor absorption and the varlations are not bolieved to be significant.

Infrared opectra of Mars and the sur. The apper curve shows the speatrum of the sur with sbsorptions produced 6y water shd methane in the esarth's sinosphere. the midde ourve ${ }^{18}$ the spectruz of teszonis, the desurt rextion,
vithin the circle in the sketch. The botton curve shows the spectuve of o strip seross Yara $k s$ showe in the swote and incluake syrtis Majar. Tos last apectrwa ahon

We need good line lists...
Exomol and other groups

IN CINEMAS 20 MAY 2019

Water vapour absorption as a function of temperature and wavelength

Key molecules absorbing in IR

Temperature-Pressure profile in hot Jupiters

Thermal profiles for the hypothetical 'hot', 'warm' and 'cool' exoplanets (as labelled) used in the chemical models shown in figure. The grey dashed lines represent the equal-abundance curves for $\mathrm{CH} 4-\mathrm{CO}$ and $\mathrm{NH} 3-\mathrm{N} 2$. Profiles to the right of these curves are within the N 2 and/or CO stability fields. The dot-dashed lines show the condensation curves for MgSiO , Mg2SiO4 and Fe (solid, liquid). Moses 2014

Temperature-pressure Profile

Molecules lines list
(a) (i)

Which molecules are expected to be abundant?

Spectral signature of a transiting planet

$\mathrm{R}_{\mathrm{p}}{ }^{2} / \mathrm{R}_{\mathrm{s}}{ }^{2}$

Molecule a
Molecule b

589. nm Wavelength (nm) Charbonneau et al., 2002

First detection of Na !
Confirmed also from the ground
Sing et al., 2008, Snellen et al. 2009, etc

Charbonneau et al. (2000)

First detection of Na !

Confirmed also fern the ground Sing et al., 2008, Snellen et al. 200

the transmission spectra can be explained by the combination of the centre-to-limb variation and the Rossiter-McLaughlin effect.

Rule of thumb, if atomic species or molecules are both present in the star and the planet, we'd better be cautious....

STIS: Lya HD 209458b
~9\% absorption in the Ly α line, No red/blue shift

Ben-Jaffel, ApJL, 2008

15\% absorption in the Lyo line

Vidal-Madjar et al., Nature, 2003 Ballester, Sing, Herbert, Nature, 2007

STIS: Lya HD 209458b

Planetary properties of the upper atmosphere

Koskinen et al., Nature, 2008

Stellar wind

Holmstrom et al., Nature, 2008

Koskinen et al., 2010; Yelle, 2003; Lecavelier et al., 2003; Lammer..2004, Tian et al. 2005

CII Transit Measurements

(Linsky et al. 2010)

Silll Transit Measurements

(Linsky et al. 2010)

Phase curves u Andromeda

Harrington et al. 2006

Day/Night phase curves, COROT-2b, HD190733b

essentialelement of life,
because without water,
you con't make coffee.

Water vapor in the hot Jupiter HD189733b

Tinetti et al., Nature, 2007; Beaulieu et al. 2008

SPITZER $3.6 \mu \mathrm{~m}$, (channel 1)

Correcting for pixel phase effects

Estimating systematic trends from the data

HD189733b, Water + Methane

Swain, Vasisht, Tinetti, Nature, 2008

HD189733b, Water + Methane

Water, CO on HD 189733b occultation obs: Spitzer

Charbonneau et al., ApJ, 2008; Barman, ApJL, 2008

HD209458b

GJ1214, super Earth ? Mini Neptunes ? With HST clouds are currently hidding molecules Need to go further to the IR

Snellen et al., 2010, VLT spectra of HD209458b

Figure S2: Models used for the transmission of carbon monoxide (top panel), water vapour (middle panel), and methane (lower panel) in the atmosphere of HD209458b.

Gravity spectra of betapicb, R=500 and $R=70$

1) mass ~ brown dwarf
2) low C/O ratio for the planet suggests a formation through coreaccretion, with strong planetesimal enrichment.

exoplanet
beta pictoris b

6 AU

Analysing exoplanet data, Chef's cooking recipie

HST Archives

IRACLIS code

Tsiaras et al.

TauREX code

Waldmann, Al Refaie Changeat, Edwards, et al

Computing power

Ariel school 2019

In White light

We fit a transit model x systematics model

Models for systematics

$$
\left.n_{w}^{s c a n}=\left(1-\mathrm{ra}_{1} \mathrm{t}-\mathrm{TO}\right)\right)\left(1-\mathrm{rb}_{1} \mathrm{e}^{-\mathrm{rb} 2(\mathrm{t}-\mathrm{to})}\right)
$$

Linear ramp

Exponential ramp

Figure 4.7: Results from the analysis of the white light-curve for the test case of HD 209458 b. Top panel: Normalised raw light-curve. Second panel: Light-curve divided by the best-fit model for the systematics. Third panel: Fitting residuals. Bottom panel: Autocorrelation function of the residuals.

In white light

White light versus 1.3 microns

planet WASP-127b, Skaf et al. 2021 Ariel School)

1.1-1.7 microns
 H2O dominated spectra

ARES I: CHARACTERISING HOT JUPITERS WASP-127 B, WASP-79 B AND WASP-62 B WITH HUBBLE WFC3 TRANSMISSION SPECTRA*

Nour Skaf, ${ }^{1,2}$ Michelle Fabienne Bieger, ${ }^{3}$ Billy Edwards, ${ }^{2}$ Quentin Changeat, ${ }^{2}$ Mario Morvan, ${ }^{2}$ Flavien Kiefer, ${ }^{4}$ Doriann Blain, ${ }^{1}$ Tiziano Zingales, ${ }^{5}$ Mathilde Poveda, ${ }^{6,7}$ Ahmed Al-Refaie, ${ }^{2}$ Robin Baeyens, ${ }^{8}$ Amélie Gressier, ${ }^{4,1,9}$ Gloria Giulluy, ${ }^{10,11}$ Adam Yassin Jaziri, ${ }^{5}$ Darius Modirrousta-Galian, ${ }^{11}$ Lorenzo Mugnai, ${ }^{12}$ William Pluriel, ${ }^{5}$ Niall Whiteford, ${ }^{13}$ Sam Wright, ${ }^{2}$ Benjamin Charnay, ${ }^{1}$ Angelos Tsiaras, ${ }^{2}$ Ingo Waldmann, ${ }^{2}$ and Jean-Philippe Beaulieu ${ }^{14,4}$

Table 1. Target Parameters

Parameter	WASP-127b	WASP-79b	WASP-62b
	Stellar parameters		
Spectral type	G5	F5	F7
$T_{\text {eff }}(\mathrm{K})$	5750	6600	6230
$\log g(\mathrm{cgs})$	3.9	4.06	4.45
$[\mathrm{Fe} / \mathrm{H}]$	-0.18	0.03	0.04
Planetary parameters			
$P(\mathrm{~d})$	4.17807015	3.662387	4.411953
$T_{\text {mid }}(\mathrm{BJD}-2450000)$	8138.670144	7815.89868	5855.39195
$I_{c}\left({ }^{\circ}\right)$	87.88	83.3	88.3
$M_{\mathrm{P}}\left(M_{J}\right)$	0.18	0.9	0.57
$R_{\mathrm{P}}\left(R_{J}\right)$	1.37	2.09	1.39
$T_{\text {eq }, A=0}$	1400	1900	1440

Derived parameters used for the Iraclis runs

R_{P} / R_{*}	0.09992	0.112606	0.1091
$a_{\mathrm{pl}} / R_{\star}$	7.846	6.069	9.5253

4

Skaf et al.

Table 4. Comparison of the Bayesian log evidence for different models. For WASP-79b and WASP-62b, the retrieved temperature is always significantly below the equilibrium temperature for the planet, particularly if FeH is not included as an opacity rce.

WASP-127b (No Molecules Log Evidence: 1.73)			
Setup	Log Evidence	Retrieved Temperature $[\mathrm{K}]$	Equilibrium Temperature $[\mathrm{K}]$
$\mathrm{H}_{2} \mathrm{O}$	161.87	1027	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3$	161.27	1005	~ 1400
$\mathrm{H}_{2} \mathrm{O}, \mathrm{FeH}$	170.20	1305	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3, \mathrm{FeH}$	169.64	1304	

WASP-79 (No Molecules Log Evidence: 173.53)

Setup	Log Evidence	Retrieved Temperature [K]	Equilibrium Temperature [K]
$\mathrm{H}_{2} \mathrm{O}$	188.34	621	~ 1800
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3$	187.98	603	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{FeH}$	190.87	888	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3, \mathrm{FeH}$	190.60	924	
WASP-62 (No Molecules Log Evidence: 184.49)			
Setup	Log Evidence	Retrieved Temperature [K]	Equilibrium Temperature [K]
$\mathrm{H}_{2} \mathrm{O}$	191.65	607	~ 1450
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3$	190.92	597	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{FeH}$	193.40	842	
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NH} 3, \mathrm{FeH}$	193.11	894	

Table 3. Table of fitted parameters for the retrievals performed on our targets

Retrieved Parameters	bounds	WASP-127b	WASP-79b	WASP-62b
$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	$-2.71_{-1.05}^{+0.78}$	$-2.34_{-0.72}^{+0.51}$	$-2.56_{-1.17}^{+0.76}$
$\log [\mathrm{FeH}]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	$-5.25_{-1.10}^{+0.88}$	$-4.39_{-1.12}^{+0.88}$	$-4.10_{-1.82}^{+1.26}$
$\log \left[\mathrm{CH} H_{4}\right]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	<-5	<-5	<-5
$\log [\mathrm{CO}]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	<-3	<-3	<-3
$\log \left[\mathrm{CO}_{2}\right]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	<-3	<-3	<-3
$\log [\mathrm{NH} 3]$	$1 \mathrm{e}-12-1 \mathrm{e}-1$	<-5	<-5	<-5
$T_{p}(\mathrm{~K})$	$400-2500$	1304_{-175}^{+185}	924_{-204}^{+242}	894_{-239}^{+248}
$R_{p}\left(R_{\text {jup }}\right)$	$\pm 50 \%$	$1.15_{-0.04}^{+0.04}$	$1.69_{-0.02}^{+0.02}$	$1.34_{-0.02}^{+0.02}$
$\log P_{\text {clouds }}$	$1 \mathrm{e}-2-1 \mathrm{e} 6$	$1.7_{-0.66}^{+0.93}$	>3	$2.5_{-0.88}^{+1.1}$
$\mu($ derived $)$		$2.34_{-0.03}^{+0.20}$	$2.38_{-0.07}^{+0.33}$	$2.46_{-0.04}^{+0.32}$
ADI	-	167.9	17.1	8.6
σ-level	-	$>5 \sigma$	$>5 \sigma$	$3-5 \sigma$

Changeat Q., et al. 2022 «Five Key Exoplanet Questions Answered via the Analysis of 25 Hot-Jupiter Atmosnheres in Eclinse ». AnJS

Population study, 26 planets < 6 Rearth

Gressier, Changeat, Edwards et al. 2022 submitted

Planet	$\mathrm{H}_{2} \mathrm{O}$	CH_{4}	CO	CO_{2}	NH_{3}	HCN	N_{2}	references
55 Cancri e								T16a
GJ 436 b								
GJ 1132 b								
GJ 1214 b								
GJ 3470 b								B19a, E22
HAT-P-11 b								F14,E22
HAT-P-26 b								W17, MD19, E22
HD 3167 c							G20, ME20, E22	
HD 97658 b								E22
HD 106315 c								
HD 219666 b								
HIP 41378 b								T19, B19b, E22
K2-18 b								
K2-24 b								E22
LHS 1140 b								
LTT 9779 b								
TOI-270 c								E22
TOI-270 d								B22, E22
TOI-674 b								
TRAPPIST-1 b								
TRAPPIST-1 c								
TRAPPIST-1 d								
TRAPPIST-1 e								
TRAPPIST-1 f								
TRAPPIST-1								
TRAPPIST-1 h								

First JWST direct imaging of HIP 65426b, NIRCAM+MIRI

Figure 9. All existing spectroscopic and photometric observations of HIP 65426 b as obtained from SPHERE/IFS (triangles) SPHERE/IRDIS (squares), NaCo (diamonds), and JWST (circles). Top: Data are plotted alongside the 1, 2, and 3σ confidence intervals obtained from fitting to a collection of BT-SETTL atmospheric forward models (blue shaded regions), and the model values in the photometric bandpasses (small blue circles). At 3σ, the best fit models occupy parameter ranges of $T_{\text {eff }}=1673_{-25}^{+27} \mathrm{~K}$ $\log (g)=4.10_{-0.17}^{+0.20}$ dex, and $R=0.90_{-0.04}^{+0.04} R_{\text {Jup. }}$. The NaCo data have not been included in the model fitting process. Also plotted are the normalised filter throughput profiles for all photometric observations, with the NaCo throughputs scaled by a factor of 2 to improve clarity. Bottom: Residuals of each data point relative to the best fit model in addition to 1,2 , and 3σ regions (grey shading)

Figure 11. Posterior distributions for the BT-Settl atmospheric model fitting to both $J W S T$ and $V L T /$ SPHERE observations of HIP 65426 b . Best fit values and 1σ uncertainties are indicated, however, these should be interpreted as the model phase pace that fits these data, and not the precision to which these properties can be empirically measured

Hot saturn WASP-39b

- Orbit a G7 star in 4.05 days
- 0.28 Mjup and 1.28 Rjup
- Temperature 1170 K

Panek et al., 2022 in prep

WASP-39b

Hot saturn WASP-39b

Notice the two Spitzer points 3.6 and 4.5 microns

Hot saturn WASP-39b

- Orbit a G7 star in 4.05 days
- 0.28 Mjup and 1.28 Rjup
- Temperature 1170 K

