
/imagine prompt: A planetary system being observed by
scientists with the help of machines, minimalist

Machine learning in Exoplanets
Ariel Summer School, Biarritz
September 2023

Ingo Waldmann

Progress on AI has accelerated significantly
Mainly due to an exponential increase in compute

Savilla et al. 2022, arXiv: 2022:05924v2

e.g. Lahav et al 1994

WORKING PAPER

GPTs are GPTs: An Early Look at the Labor Market Impact
Potential of Large Language Models

Tyna Eloundou1, Sam Manning1,2, Pamela Mishkin�1, and Daniel Rock3

1OpenAI
2OpenResearch

3University of Pennsylvania

March 27, 2023

Abstract
We investigate the potential implications of large language models (LLMs), such as Generative Pre-

trained Transformers (GPTs), on the U.S. labor market, focusing on the increased capabilities arising from
LLM-powered software compared to LLMs on their own. Using a new rubric, we assess occupations based
on their alignment with LLM capabilities, integrating both human expertise and GPT-4 classifications.
Our findings reveal that around 80% of the U.S. workforce could have at least 10% of their work tasks
a�ected by the introduction of LLMs, while approximately 19% of workers may see at least 50% of their
tasks impacted. We do not make predictions about the development or adoption timeline of such LLMs.
The projected e�ects span all wage levels, with higher-income jobs potentially facing greater exposure to
LLM capabilities and LLM-powered software. Significantly, these impacts are not restricted to industries
with higher recent productivity growth. Our analysis suggests that, with access to an LLM, about 15%
of all worker tasks in the US could be completed significantly faster at the same level of quality. When
incorporating software and tooling built on top of LLMs, this share increases to between 47 and 56%
of all tasks. This finding implies that LLM-powered software will have a substantial e�ect on scaling
the economic impacts of the underlying models. We conclude that LLMs such as GPTs exhibit traits of
general-purpose technologies, indicating that they could have considerable economic, social, and policy
implications.

1 Introduction

As shown in Figure 1, recent years, months, and weeks have seen remarkable progress in the field of generative
AI and large language models (LLMs). While the public often associates LLMs with various iterations of the
Generative Pre-trained Transformer (GPT), LLMs can be trained using a range of architectures, and are not
limited to transformer-based models (Devlin et al., 2019). LLMs can process and produce various forms of
sequential data, including assembly language, protein sequences and chess games, extending beyond natural
language applications alone. In this paper, we use LLMs and GPTs somewhat interchangeably, and specify in
our rubric that these should be considered similar to the GPT-family of models available via ChatGPT or
the OpenAI Playground (which at the time of labeling included models in the GPT-3.5 family but not in the
GPT-4 family). We examine LLMs with text- and code-generating abilities, use the term "generative AI" to
additionally include modalities such as images or audio, and use "LLM-powered software" to cover tools built
on top of LLMs or that combine LLMs with other generative AI models.

�Corresponding author (pamela@openai.com). Authors contributed equally and are listed alphabetically.

ar
X

iv
:2

30
3.

10
13

0v
4

 [e
co

n.
G

N
]

23
 M

ar
 2

02
3 arXiv: 2303.10130v4

WORKING PAPER

GPTs are GPTs: An Early Look at the Labor Market Impact
Potential of Large Language Models

Tyna Eloundou1, Sam Manning1,2, Pamela Mishkin�1, and Daniel Rock3

1OpenAI
2OpenResearch

3University of Pennsylvania

March 27, 2023

Abstract
We investigate the potential implications of large language models (LLMs), such as Generative Pre-

trained Transformers (GPTs), on the U.S. labor market, focusing on the increased capabilities arising from
LLM-powered software compared to LLMs on their own. Using a new rubric, we assess occupations based
on their alignment with LLM capabilities, integrating both human expertise and GPT-4 classifications.
Our findings reveal that around 80% of the U.S. workforce could have at least 10% of their work tasks
a�ected by the introduction of LLMs, while approximately 19% of workers may see at least 50% of their
tasks impacted. We do not make predictions about the development or adoption timeline of such LLMs.
The projected e�ects span all wage levels, with higher-income jobs potentially facing greater exposure to
LLM capabilities and LLM-powered software. Significantly, these impacts are not restricted to industries
with higher recent productivity growth. Our analysis suggests that, with access to an LLM, about 15%
of all worker tasks in the US could be completed significantly faster at the same level of quality. When
incorporating software and tooling built on top of LLMs, this share increases to between 47 and 56%
of all tasks. This finding implies that LLM-powered software will have a substantial e�ect on scaling
the economic impacts of the underlying models. We conclude that LLMs such as GPTs exhibit traits of
general-purpose technologies, indicating that they could have considerable economic, social, and policy
implications.

1 Introduction

As shown in Figure 1, recent years, months, and weeks have seen remarkable progress in the field of generative
AI and large language models (LLMs). While the public often associates LLMs with various iterations of the
Generative Pre-trained Transformer (GPT), LLMs can be trained using a range of architectures, and are not
limited to transformer-based models (Devlin et al., 2019). LLMs can process and produce various forms of
sequential data, including assembly language, protein sequences and chess games, extending beyond natural
language applications alone. In this paper, we use LLMs and GPTs somewhat interchangeably, and specify in
our rubric that these should be considered similar to the GPT-family of models available via ChatGPT or
the OpenAI Playground (which at the time of labeling included models in the GPT-3.5 family but not in the
GPT-4 family). We examine LLMs with text- and code-generating abilities, use the term "generative AI" to
additionally include modalities such as images or audio, and use "LLM-powered software" to cover tools built
on top of LLMs or that combine LLMs with other generative AI models.

�Corresponding author (pamela@openai.com). Authors contributed equally and are listed alphabetically.

ar
X

iv
:2

30
3.

10
13

0v
4

 [e
co

n.
G

N
]

23
 M

ar
 2

02
3

WORKING PAPER

Group Occupations with highest exposure % Exposure

Human UUU Interpreters and Translators 76.5
Survey Researchers 75.0
Poets, Lyricists and Creative Writers 68.8
Animal Scientists 66.7
Public Relations Specialists 66.7

Human VVV Survey Researchers 84.4
Writers and Authors 82.5
Interpreters and Translators 82.4
Public Relations Specialists 80.6
Animal Scientists 77.8

Human ZZZ Mathematicians 100.0
Tax Preparers 100.0
Financial Quantitative Analysts 100.0
Writers and Authors 100.0
Web and Digital Interface Designers 100.0

Humans labeled 15 occupations as "fully exposed."

Model UUU Mathematicians 100.0
Correspondence Clerks 95.2
Blockchain Engineers 94.1
Court Reporters and Simultaneous Captioners 92.9
Proofreaders and Copy Markers 90.9

Model VVV Mathematicians 100.0
Blockchain Engineers 97.1
Court Reporters and Simultaneous Captioners 96.4
Proofreaders and Copy Markers 95.5
Correspondence Clerks 95.2

Model ZZZ Accountants and Auditors 100.0
News Analysts, Reporters, and Journalists 100.0
Legal Secretaries and Administrative Assistants 100.0
Clinical Data Managers 100.0
Climate Change Policy Analysts 100.0

The model labeled 86 occupations as "fully exposed."

Highest variance Search Marketing Strategists 14.5
Graphic Designers 13.4
Investment Fund Managers 13.0
Financial Managers 13.0
Insurance Appraisers, Auto Damage 12.6

Table 4: Occupations with the highest exposure according to each measurement. The final row lists the
occupations with the highest f2 value, indicating that they had the most variability in exposure scores.
Exposure percentages indicate the share of an occupation’s task that are exposed to GPTs (UUU) or GPT-powered
software (VVV and ZZZ), where exposure is defined as driving a reduction in time it takes to complete the task by at
least 50% (see exposure rubric A.1). As such, occupations listed in this table are those where we estimate
that GPTs and GPT-powered software are able to save workers a significant amount of time completing a
large share of their tasks, but it does not necessarily suggest that their tasks can be fully automated by these
technologies.

GPT technology
alone

GPT technology +
some software
augmentation

GPT technology +
full software

augmentation

Metric:
At least 50% of tasks will be
automated/augmented

GPT only

GPT + 50%
specialised software on top
of GPT

GPT + specialised
software on top of GPT

α =

β =

ζ =

A significant number of tasks will be affected
Much of our work flow will change in the next years

WORKING PAPER

Basic Skill UUU
(std err)

VVV
(std err)

ZZZ
(std err)

All skill importance scores are normalized to be between 0 and 1.

Constant 0.082*** -0.112*** 0.300***
(0.011) (0.011) (0.057)

Active Listening 0.128** 0.214*** 0.449***
(0.047) (0.043) (0.027)

Mathematics -0.127*** 0.161*** 0.787***
(0.026) (0.021) (0.049)

Reading Comprehension 0.153*** 0.470*** -0.346***
(0.041) (0.037) (0.017)

Science -0.114*** -0.230*** -0.346***
(0.014) (0.012) (0.017)

Speaking -0.028 0.133*** 0.294***
(0.039) (0.033) (0.042)

Writing 0.368*** 0.467*** 0.566***
(0.042) (0.037) (0.047)

Active Learning -0.157*** -0.065** 0.028
(0.027) (0.024) (0.032)

Critical Thinking -0.264*** -0.196*** -0.129**
(0.036) (0.033) (0.042)

Learning Strategies -0.072* -0.209*** -0.346***
(0.028) (0.025) (0.034)

Monitoring -0.067** -0.149*** -0.232***
(0.023) 0.020) (0.026)

Programming 0.637*** 0.623*** 0.609***
(0.030) (0.022) (0.024)

Table 5: Regression of occupation-level, human-annotated exposure to GPTs on skill importance for each
skill in the O*NET Basic skills category, plus the programming skill. Descriptions of the skills may be found
in Appendix B.

Job
Zone

Preparation
Required

Education
Required

Example Occupations Median
Income

Tot Emp
(000s)

H
UUU

M
UUU

H
VVV

M
VVV

H
ZZZ

M
ZZZ

1 None or little
(0-3 months)

High school
diploma or GED
(otional)

Food preparation workers,
dishwashers, floor sanders

$30,230 13,100 0.03 0.04 0.06 0.06 0.09 0.08

2 Some (3-12
months)

High school
diploma

Orderlies, customer
service representatives,
tellers

$38,215 73,962 0.07 0.12 0.16 0.20 0.24 0.27

3 Medium (1-2
years)

Vocational school,
on-the-job training,
or associate’s
degree

Electricians, barbers,
medical assistants

$54,815 37,881 0.11 0.14 0.26 0.32 0.41 0.51

4 Considerable
(2-4 years)

Bachelor’s degree Database administrators,
graphic designers, cost
estimators

$77,345 56,833 0.23 0.18 0.47 0.51 0.71 0.85

5 Extensive (4+
years)

Master’s degree or
higher

Pharmacists, lawyers,
astronomers

$81,980 21,221 0.23 0.13 0.43 0.45 0.63 0.76

Table 6: Mean exposure to GPTs by job zone. For each job zone, we also present the median of median
annual income for each constituting occupation in USD, and the total number of workers in all occupations
for that job zone, in the thousands.

Eloundou et al. 2023

Human estimate

GPT4 estimate

 Search Term: (full:”extrasolar planet" or full:"exoplanet") and (full:"machine
learning" or full:"artificial intelligence" or full:"neural network")

State of ML in Exoplanets

Generate using Astrophysics Data System

A lot of AI papers…

There’s a lot of AI around …

We can’t cover it all in 1.5 hours

What the Exoplanet Science
addressable with AI?

•Realistic instrument noise simulations/
detrending

•Better data de-trending (instrumental
noise and/or stellar)

•Faster and better inverse modelling
(retrievals and light curve fitting)

•Faster generative models (e.g. chemistry,
radiative transfer, circulation,
condensation, etc)

•Many other things…

/imagine prompt: a woman working on a competition involving the discovery of new
planets, with a blackboard in the background, filled with equations ,minimalist

Ariel Data Challenge Factsheet

Past Challenges Highlights
• Successfully run two challenges at the European Conference of Machine Learning (ECML-

PKDD) in 2019 and 2021.
• Broad participation, the 2021 Challenge was the largest ECML-PKDD challenge of the last

three years, attracting 130 teams globally.
• The Ariel Data Challenges attract a mix of academia and industry (the 2021 winner was the

Portugese startup ML Analytics).
• The Challenge was used as Masters thesis topics in two universities in Germany and

Nanjing University in China.
• The Ariel Challenges are run in conjunction with the European Planetary Science Congress

who award the annual ‘Ariel Challenge Award’.
• Two press releases were issued in 2021 with involvement by the European Space Agency,

UCL and Europlanet Society (https://tinyurl.com/Ariel-challenge), resulting in significant
media attention across Europe.

The Ariel Data Challenge 2021 winner was
featured on the Portugese Quiz Show “Joker” on

December 7th 2021

Let’s focus on some AI applications to Exoplanet
Atmospheric retrievals

Yip et al. 2022

• What if we can train an AI to quickly and reliably classify and measure planet atmospheres?

A quick word on using AI

DON’T!
Only proceed if you really have to …

But if you have to use AI/ML
A quick cheat sheet:

- PCA, clustering and component separation, Random Forests…

- Deep learning

- Probabilistic programming

- Simulation based inference

Use sklearn (https://scikit-learn.org/stable/index.html)

Use PyTorch (https://pytorch.org/)

Use PyRo (https://pyro.ai/)

Use SBI (https://www.mackelab.org/sbi/)
- Great resources for models and tutorials

HuggingFace (https://huggingface.co/)

Papers With Code (https://paperswithcode.com/

https://scikit-learn.org/stable/index.html
https://pyro.ai/
https://huggingface.co/

Agenda
Unsupervised learning

(Self-)Supervised learning

• Clustering (Nearest Neighbours, K-means)

• Component Separation (PCA, ICA)

• Random Forests

• Multi-layer perceptrons

• Autoencoders

• Bayesian Neural Networks

• Variational Inference

• Explainability

Let’s reproduce some recent papers today

+ several others using similar techniques

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115
Fig. 12. Trade-off between model inter-
pretability and performance, and a represen-
tation of the area of improvement where the
potential of XAI techniques and tools resides.

As perfectly stated in [347] , it is not necessarily true that models
that are more complex are inherently more accurate. This statement is
false in cases in which the data is well structured and features at our
disposal are of great quality and value. This case is somewhat common
in some industry environments, since features being analyzed are con-
strained within very controlled physical problems, in which all of the
features are highly correlated, and not much of the possible landscape
of values can be explored in the data [348] . What can be hold as true, is
that more complex models enjoy much more flexibility than their sim-
pler counterparts, allowing for more complex functions to be approxi-
mated. Now, returning to the statement “models that are more complex are
more accurate ”, given the premise that the function to be approximated
entails certain complexity, that the data available for study is greatly
widespread among the world of suitable values for each variable and
that there is enough data to harness a complex model, the statement
presents itself as a true statement. It is in this situation that the trade-
off between performance and interpretability can be observed. It should
be noted that the attempt at solving problems that do not respect the
aforementioned premises will fall on the trap of attempting to solve a
problem that does not provide enough data diversity (variance). Hence,
the added complexity of the model will only fight against the task of
accurately solving the problem.

In this path toward performance, when the performance comes hand
in hand with complexity, interpretability encounters itself on a down-
wards slope that until now appeared unavoidable. However, the appari-
tion of more sophisticated methods for explainability could invert or
at least cancel that slope. Fig. 12 shows a tentative representation in-
spired by previous works [7] , in which XAI shows its power to improve
the common trade-off between model interpretability and performance.
Another aspect worth mentioning at this point due to its close link to
model interpretability and performance is the approximation dilemma :
explanations made for a ML model must be made drastic and approxi-
mate enough to match the requirements of the audience for which they
are sought, ensuring that explanations are representative of the studied
model and do not oversimplify its essential features.
5.2. On the concept and metrics

The literature clearly asks for an unified concept of explainability. In
order for the field to thrive, it is imperative to place a common ground
upon which the community is enabled to contribute new techniques
and methods. A common concept must convey the needs expressed in
the field. It should propose a common structure for every XAI system.
This paper attempted a new proposition of a concept of explainability

that is built upon that from Gunning [7] . In that proposition and the
following strokes to complete it (Section 2.2), explainability is defined
as the ability a model has to make its functioning clearer to an audience.
To address it, post-hoc type methods exist. The concept portrayed in
this survey might not be complete but as it stands, allows for a first
common ground and reference point to sustain a profitable discussion in
this matter. It is paramount that the field of XAI reaches an agreement in
this respect combining the shattered efforts of a widespread field behind
the same banner.

Another key feature needed to relate a certain model to this con-
crete concept is the existence of a metric. A metric, or group of them
should allow for a meaningful comparison of how well a model fits the
definition of explainable. Without such tool, any claim in this respect
dilutes among the literature, not providing a solid ground on which to
stand. These metrics, as the classic ones (accuracy, F1, sensitivity...),
should express how well the model performs in a certain aspect of ex-
plainability. Some attempts have been done recently around the mea-
surement of XAI, as reviewed thoroughly in [349,350] . In general, XAI
measurements should evaluate the goodness, usefulness and satisfaction
of explanations, the improvement of the mental model of the audience
induced by model explanations, and the impact of explanations on the
performance of the model and on the trust and reliance of the audience.
Measurement techniques surveyed in [349] and [350] (e.g., goodness
checklist, explanation satisfaction scale, elicitation methods for men-
tal models, computational measures for explainer fidelity, explanation
trustworthiness and model reliability) seem to be a good push in the di-
rection of evaluating XAI techniques. Unfortunately, conclusions drawn
from these overviews are aligned with our prospects on the field: more
quantifiable, general XAI metrics are really needed to support the exist-
ing measurement procedures and tools proposed by the community.

This survey does not tackle the problem of designing such a suite of
metrics, since such a task should be approached by the community as a
whole prior acceptance of the broader concept of explainability, which
on the other hand, is one of the aims of the current work. Nevertheless,
we advocate for further efforts towards new proposals to evaluate the
performance of XAI techniques, as well as comparison methodologies
among XAI approaches that allow contrasting them quantitatively under
different application context, models and purposes.
5.3. Challenges to achieve explainable deep learning

While many efforts are currently being made in the area of XAI, there
are still many challenges to be faced before being able to obtain explain-
ability in DL models. First, as explained in Section 2.2 , there is a lack of

100

Barredo Arrieta et al. 2021

A quick word on Explainability

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115
Fig. 12. Trade-off between model inter-
pretability and performance, and a represen-
tation of the area of improvement where the
potential of XAI techniques and tools resides.

As perfectly stated in [347] , it is not necessarily true that models
that are more complex are inherently more accurate. This statement is
false in cases in which the data is well structured and features at our
disposal are of great quality and value. This case is somewhat common
in some industry environments, since features being analyzed are con-
strained within very controlled physical problems, in which all of the
features are highly correlated, and not much of the possible landscape
of values can be explored in the data [348] . What can be hold as true, is
that more complex models enjoy much more flexibility than their sim-
pler counterparts, allowing for more complex functions to be approxi-
mated. Now, returning to the statement “models that are more complex are
more accurate ”, given the premise that the function to be approximated
entails certain complexity, that the data available for study is greatly
widespread among the world of suitable values for each variable and
that there is enough data to harness a complex model, the statement
presents itself as a true statement. It is in this situation that the trade-
off between performance and interpretability can be observed. It should
be noted that the attempt at solving problems that do not respect the
aforementioned premises will fall on the trap of attempting to solve a
problem that does not provide enough data diversity (variance). Hence,
the added complexity of the model will only fight against the task of
accurately solving the problem.

In this path toward performance, when the performance comes hand
in hand with complexity, interpretability encounters itself on a down-
wards slope that until now appeared unavoidable. However, the appari-
tion of more sophisticated methods for explainability could invert or
at least cancel that slope. Fig. 12 shows a tentative representation in-
spired by previous works [7] , in which XAI shows its power to improve
the common trade-off between model interpretability and performance.
Another aspect worth mentioning at this point due to its close link to
model interpretability and performance is the approximation dilemma :
explanations made for a ML model must be made drastic and approxi-
mate enough to match the requirements of the audience for which they
are sought, ensuring that explanations are representative of the studied
model and do not oversimplify its essential features.
5.2. On the concept and metrics

The literature clearly asks for an unified concept of explainability. In
order for the field to thrive, it is imperative to place a common ground
upon which the community is enabled to contribute new techniques
and methods. A common concept must convey the needs expressed in
the field. It should propose a common structure for every XAI system.
This paper attempted a new proposition of a concept of explainability

that is built upon that from Gunning [7] . In that proposition and the
following strokes to complete it (Section 2.2), explainability is defined
as the ability a model has to make its functioning clearer to an audience.
To address it, post-hoc type methods exist. The concept portrayed in
this survey might not be complete but as it stands, allows for a first
common ground and reference point to sustain a profitable discussion in
this matter. It is paramount that the field of XAI reaches an agreement in
this respect combining the shattered efforts of a widespread field behind
the same banner.

Another key feature needed to relate a certain model to this con-
crete concept is the existence of a metric. A metric, or group of them
should allow for a meaningful comparison of how well a model fits the
definition of explainable. Without such tool, any claim in this respect
dilutes among the literature, not providing a solid ground on which to
stand. These metrics, as the classic ones (accuracy, F1, sensitivity...),
should express how well the model performs in a certain aspect of ex-
plainability. Some attempts have been done recently around the mea-
surement of XAI, as reviewed thoroughly in [349,350] . In general, XAI
measurements should evaluate the goodness, usefulness and satisfaction
of explanations, the improvement of the mental model of the audience
induced by model explanations, and the impact of explanations on the
performance of the model and on the trust and reliance of the audience.
Measurement techniques surveyed in [349] and [350] (e.g., goodness
checklist, explanation satisfaction scale, elicitation methods for men-
tal models, computational measures for explainer fidelity, explanation
trustworthiness and model reliability) seem to be a good push in the di-
rection of evaluating XAI techniques. Unfortunately, conclusions drawn
from these overviews are aligned with our prospects on the field: more
quantifiable, general XAI metrics are really needed to support the exist-
ing measurement procedures and tools proposed by the community.

This survey does not tackle the problem of designing such a suite of
metrics, since such a task should be approached by the community as a
whole prior acceptance of the broader concept of explainability, which
on the other hand, is one of the aims of the current work. Nevertheless,
we advocate for further efforts towards new proposals to evaluate the
performance of XAI techniques, as well as comparison methodologies
among XAI approaches that allow contrasting them quantitatively under
different application context, models and purposes.
5.3. Challenges to achieve explainable deep learning

While many efforts are currently being made in the area of XAI, there
are still many challenges to be faced before being able to obtain explain-
ability in DL models. First, as explained in Section 2.2 , there is a lack of

100

•Conceptually, the more complex the model the harder to explain

•Similarly, the more complex the model, the more expressive

•Researcher needs to weigh up interpretability vs accuracy

N_wavelength_bins

N
_s

am
pl

es

Introducing a generic data set
For most examples, our data set is an array of spectra

Array of Spectra
Spectra for various compositions
and planetary/stellar parameters

e.g. Changeat & Yip 2022

4 Changeat & Yip (2023)

Figure 2. Distribution of nine stellar and planetary parameters used to generate the synthetic spectra. These distributions follow closely to the actual demographic
of currently known population of exoplanets, and therefore they are also subject to biases presented in the original population.

meaning that our sample of observations contains a wide range of
final SNR. Since we used real objects for those simulations and that
all planets are not favourable targets for Ariel, this means that some
targets require an un-realistic number of observations to reach the
SNR condition of Tier 2. However, this does not a�ect the purpose
of this dataset, providing independent instances of realistic noise
profiles.

Following those steps, we obtain a realistic Ariel simulated ob-
servation for each planet and each randomised chemistry. We show
an example of such simulated observation in Figure 3. In total, we
produced 105,887 simulated observations for the ABC Database.

2.3 The atmospheric retrieval setup

For 26,109 (25%) of the simulated observations generated at the
previous step, we perform the traditional inversion technique using
Alfnoor.

For the model to optimise, we kept the same setup as presented in
the previous section and performed parameter search on the follow-
ing free parameters: isothermal temperature (T), log abundances for
H2O, CO2, CH4, CO and NH3. The priors are made wide and un-
informative, with the atmospheric temperature being fitted between
100K and 5500K and the chemical abundances between 10�12 and
10�1 in Volume Mixing Ratios. The widely used Nested Sampling

Optimizer, MultiNest (Feroz et al. 2009), was employed with 200
live points and an evidence tolerance of 0.5.

For a single example on Ariel data, we provide the best-fit spectrum
in Figure 3. From the optimization process, we are able to extract
the traces of each parameters and the weights of the corresponding
models. This allows to construct the posterior distribution of the free
parameters with, for instance corner. The posterior distribution of
the same example is shown in Appendix B, Figure C1. Processing
of the posterior distribution also allows to extract statistical indica-
tors describing the chemical properties of the planet, such as mean,
median and quantiles for each of the investigated parameters.

2.4 Data Overview

Following the data generation process outlined above, we have gen-
erated a total of 105,887 forward models in Ariel Tier-2 resolution.
26% of them are complemented with results from atmospheric re-
trieval (following a generic setting as described in Section 2.3).

Figure 4 shows the distribution of mean transit depth (red) over-
lapped with the distribution of feature height (orange). The former
served as a proxy of the diverse planetary classes present in the
dataset. The characteristic dichotomy stemmed from current demo-

RASTI 000, 1–21 (2022)

Your data set should cover a wide range
of parameters

Clustering and PCA

/imagine prompt: separating components in a complex multi-dimensional space

axis of highest variancePC1

PC2

Principal Component Analysis (PCA)

Good tutorial on PCA:
http://arxiv.org/pdf/1404.1100v1.pdf

7

VI. A MORE GENERAL SOLUTION USING SVD

This section is the most mathematically involved and can be
skipped without much loss of continuity. It is presented solely
for completeness. We derive another algebraic solution for
PCA and in the process, find that PCA is closely related to
singular value decomposition (SVD). In fact, the two are so
intimately related that the names are often used interchange-
ably. What we will see though is that SVD is a more general
method of understanding change of basis.

We begin by quickly deriving the decomposition. In the fol-
lowing section we interpret the decomposition and in the last
section we relate these results to PCA.

A. Singular Value Decomposition

Let X be an arbitrary n⇥m matrix4 and XT X be a rank r,
square, symmetric m⇥m matrix. In a seemingly unmotivated
fashion, let us define all of the quantities of interest.

• {v̂1, v̂2, . . . , v̂r} is the set of orthonormal m⇥ 1 eigen-
vectors with associated eigenvalues {l1,l2, . . . ,lr} for
the symmetric matrix XT X.

(XT X)v̂i = liv̂i

• si ⌘
p

li are positive real and termed the singular val-
ues.

• {û1, û2, . . . , ûr} is the set of n ⇥ 1 vectors defined by
ûi ⌘ 1

si
Xv̂i.

The final definition includes two new and unexpected proper-
ties.

• ûi · ûj =

⇢
1 if i = j
0 otherwise

• kXv̂ik= si

These properties are both proven in Theorem 5. We now have
all of the pieces to construct the decomposition. The scalar
version of singular value decomposition is just a restatement
of the third definition.

Xv̂i = siûi (3)

This result says a quite a bit. X multiplied by an eigen-
vector of XT X is equal to a scalar times another vector.

4 Notice that in this section only we are reversing convention from m⇥n to
n⇥m. The reason for this derivation will become clear in section 6.3.

The set of eigenvectors {v̂1, v̂2, . . . , v̂r} and the set of vec-
tors {û1, û2, . . . , ûr} are both orthonormal sets or bases in r-
dimensional space.

We can summarize this result for all vectors in one matrix
multiplication by following the prescribed construction in Fig-
ure 4. We start by constructing a new diagonal matrix S.

S ⌘

2

666666664

s1̃
. . . 0

sr̃
0

0 .. .
0

3

777777775

where s1̃ � s2̃ � . . .� sr̃ are the rank-ordered set of singu-
lar values. Likewise we construct accompanying orthogonal
matrices,

V =
⇥
v̂1̃ v̂2̃ . . . v̂m̃

⇤

U =
⇥
û1̃ û2̃ . . . ûñ

⇤

where we have appended an additional (m� r) and (n� r) or-
thonormal vectors to “fill up” the matrices for V and U respec-
tively (i.e. to deal with degeneracy issues). Figure 4 provides
a graphical representation of how all of the pieces fit together
to form the matrix version of SVD.

XV = US

where each column of V and U perform the scalar version of
the decomposition (Equation 3). Because V is orthogonal, we
can multiply both sides by V�1 =VT to arrive at the final form
of the decomposition.

X = USVT (4)

Although derived without motivation, this decomposition is
quite powerful. Equation 4 states that any arbitrary matrix X
can be converted to an orthogonal matrix, a diagonal matrix
and another orthogonal matrix (or a rotation, a stretch and a
second rotation). Making sense of Equation 4 is the subject of
the next section.

B. Interpreting SVD

The final form of SVD is a concise but thick statement. In-
stead let us reinterpret Equation 3 as

Xa = kb

where a and b are column vectors and k is a scalar con-
stant. The set {v̂1, v̂2, . . . , v̂m} is analogous to a and the set
{û1, û2, . . . , ûn} is analogous to b. What is unique though is
that {v̂1, v̂2, . . . , v̂m} and {û1, û2, . . . , ûn} are orthonormal sets
of vectors which span an m or n dimensional space, respec-
tively. In particular, loosely speaking these sets appear to span

Single Value Decomposition

data diagonal matrix
of eigenvalues

8

The scalar form of SVD is expressed in equation 3.

Xv̂i = siûi

The mathematical intuition behind the construction of the matrix form is that we want to express all n scalar equations in just one

equation. It is easiest to understand this process graphically. Drawing the matrices of equation 3 looks likes the following.

We can construct three new matrices V, U and S. All singular values are first rank-ordered s1̃ � s2̃ � . . .� sr̃, and the corre-

sponding vectors are indexed in the same rank order. Each pair of associated vectors v̂i and ûi is stacked in the ith column along

their respective matrices. The corresponding singular value si is placed along the diagonal (the iith position) of S. This generates

the equation XV = US, which looks like the following.

The matrices V and U are m⇥m and n⇥ n matrices respectively and S is a diagonal matrix with a few non-zero values (repre-

sented by the checkerboard) along its diagonal. Solving this single matrix equation solves all n “value” form equations.

FIG. 4 Construction of the matrix form of SVD (Equation 4) from the scalar form (Equation 3).

all possible “inputs” (i.e. a) and “outputs” (i.e. b). Can we
formalize the view that {v̂1, v̂2, . . . , v̂n} and {û1, û2, . . . , ûn}
span all possible “inputs” and “outputs”?

We can manipulate Equation 4 to make this fuzzy hypothesis
more precise.

X = USVT

UT X = SVT

UT X = Z

where we have defined Z ⌘ SVT . Note that the previous
columns {û1, û2, . . . , ûn} are now rows in UT . Comparing this
equation to Equation 1, {û1, û2, . . . , ûn} perform the same role
as {p̂1, p̂2, . . . , p̂m}. Hence, UT is a change of basis from X to
Z. Just as before, we were transforming column vectors, we
can again infer that we are transforming column vectors. The
fact that the orthonormal basis UT (or P) transforms column
vectors means that UT is a basis that spans the columns of X.
Bases that span the columns are termed the column space of
X. The column space formalizes the notion of what are the
possible “outputs” of any matrix.

There is a funny symmetry to SVD such that we can define a

similar quantity - the row space.

XV = SU
(XV)T = (SU)T

VT XT = UT S
VT XT = Z

where we have defined Z ⌘ UTS. Again the rows of VT (or
the columns of V) are an orthonormal basis for transforming
XT into Z. Because of the transpose on X, it follows that V
is an orthonormal basis spanning the row space of X. The
row space likewise formalizes the notion of what are possible
“inputs” into an arbitrary matrix.

We are only scratching the surface for understanding the full
implications of SVD. For the purposes of this tutorial though,
we have enough information to understand how PCA will fall
within this framework.

C. SVD and PCA

It is evident that PCA and SVD are intimately related. Let us
return to the original m⇥ n data matrix X. We can define a

matrix of eigenvectors

Projection to orthogonal axes

z-score

• PCA decomposition always exists
• Each component is orthogonal
• Is computational easy to compute (mostly)

http://arxiv.org/pdf/1404.1100v1.pdf

spectrum,

() () ()M M
1

13
, 14

i
i

1

13

åm lº
=

and the standard deviation, σ, defined as

⎡⎣⎢ ⎤⎦⎥() (() ()) ()M M M
1

13
. 15

i
i

1

13
2

1 2

ås l mº -
=

In other words, each sample spectrum is additionally
characterized by these two parameters—μ(M) and σ(M)—that,
in statistics, are the standard measures of location and
variability, respectively. In our case, μ(M) represents the
typical value of M(λi), while σ(M) captures the variability of
the spectra over the probed range of wavelengths.

The pentaptych in Figure 4 shows scatter plots of 25,000
sample spectra in the (μ, σ) plane. These simple plots already
exhibit a very interesting structure: the bulk of the points are
clustered in the lower left portion of the point distribution,
around μ∼ 1.4 and σ∼ 0.01. This was to be expected, since
the sampling ranges for the three mixing ratios and the cloud
opacity extend all the way down to 10−13, which results in a

large number of synthetic atmospheres with very little
absorption.
More interestingly, however, Figure 4 reveals three distinct

branches extending away from the bulk population. In order to
elucidate the physics behind each branch, we color-coded the
points in the figure by the value of one of the five target
variables, as indicated at the top of each panel. Each branch
emerges only at high temperatures, as evidenced in the first
panel of Figure 4. Each branch is generated by a specific
constituent that is solely responsible for the increased opacity:

1. The cloud branch. As shown in the fifth panel of
Figure 4, the points in the (horizontal) cloud branch are
associated with high values of κcl and relatively low gas
absorption (small Xj). Since the clouds are gray, they
contribute to the opacity equally at different wavelengths,
which results in a “flat” spectrum with a low variability
with respect to the wavelength.

2. The H2O branch. As shown in the second panel of
Figure 4, the points in the (middle) water vapor branch
have high values of water concentration and relatively
low concentrations of the other absorbers (as evidenced
from the remaining panels). Since the absorption due to
water vapor is wavelength-dependent, its presence

Figure 3. Correlation matrix of the 13 features {M(λi)}, i = 1,K,13.

Figure 4. Scatter plots of 25,000 data points: the average μ(M) (plotted on the x-axis) vs. the standard deviation σ(M) (plotted on the y-axis). In each panel, the points
are color-coded by the value of one of the five target variables, indicated at the top. The black å symbol marks the location of the hot gas giant exoplanet WASP-12b.

5

The Planetary Science Journal, 3:205 (12pp), 2022 September Matchev, Matcheva, & Roman

Sklearn example of PCA

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Google Colab notebook:

https://bit.ly/ExoAI_PCA

We use the K-means clustering tool in scikit-learn to
analyze the benchmark data set. After standardizing the PCA
components, we perform the clustering in the full 13-
dimensional PCA space. Figure 9 shows our results for four
clusters, plotted in the same two PCA planes as Figure 7: the

first and second PCA components are in the left panel, and the
second and third PCA components are in the right panel. Upon
comparison with Figure 7, we see that the K-means algorithm
correctly identified the four interesting regions discussed
earlier: the cloud branch (blue points), the water branch

Figure 7. The same as Figure 4, but plotted in the plane of the first and second PCA components (top row) or the plane of the second and third PCA components
(bottom row).

Figure 8. The same as Figure 7, but plotted in the plane of the first two ISOMAP components.

Figure 9. The results from K-means clustering with four clusters in the two PCA planes of Figure 7. Note that the clustering was performed in the full 13-dimensional
space of standardized PCA components, with the results then being plotted in two dimensions only for visualization purposes. The four clusters found by the algorithm
are color-coded with blue, green, yellow, and black.

8

The Planetary Science Journal, 3:205 (12pp), 2022 September Matchev, Matcheva, & Roman

changes both the average and the standard deviation,
which results in a distinct slope of the branch in the (μ, σ)
plane.

3. The HCN branch. The points with high hydrogen cyanide
abundance and relatively low concentrations of the other
absorbers form the third—steepest—branch highlighted
in the third panel of Figure 4. The steep slope of the
branch in the (μ, σ) plane indicates a large variability in
the associated spectrum, which, in turn, is due to the
steeper slope of the function M(λ) in the HCN case—
compare the slopes of the typical spectra of “pure”
atmospheres in Figure 11 below.

4. The NH3 branch. In addition, as seen in the fourth panel
of Figure 4, there is also an ammonia branch that is
beginning to emerge, but it terminates early, due to the
lack of ammonia at high temperatures in the data set.

Note that the points for which two or more constituents have
high concentrations fall in the spaces between the branches
described above.

The (μ, σ) representation4 depicted in Figure 4 is an
important result of this paper—it clearly shows well-defined
classes of different spectral behavior that can be used for a
“quick and dirty” estimate of a planet’s atmospheric composi-
tion. Newly measured transit spectra {M(λi)} of hot gas giant
exoplanets can be plotted in this representation and quickly
classified based on σ(M) and μ(M) alone. If a spectrum falls
squarely on one of the extended branches, one can immediately
deduce the dominant absorber. Alternatively, in the case when
the spectrum ends up in the “bulk” of the distribution, one can
rule out both high temperatures and high concentrations of gas
absorbers and clouds. As a specific example, the black å
symbol in Figure 4 marks the location of the planet WASP-
12b, revealing that it is a rather nondescript planet, far from any
extremes. This qualitative observation is consistent with the
result from the quantitative analysis in Márquez-Neila et al.
(2018).

4. Principal Component Analysis

4.1. Features in the PCA Basis

The correlation analysis in Figure 3 suggests that the
spectral data allow an equivalent lower-dimensional repre-
sentation. In Figure 4, we have already identified one such
low-dimensional representation in terms of the summary
statistics μ and σ. But was this the optimal choice? The
classic approach to tackling this question is to perform a
PCA of the data (for an introduction to PCA, see
Jolliffe 2002). More recently, deep learning techniques,
such as autoencoders, have increasingly been used to learn
lower-dimensional representations of the data. For simpli-
city, we shall here focus on the PCA approach, which is
equivalent to an autoencoder with a single fully connected
hidden layer, a linear activation function, and a squared error
cost function (Geron 2017).

We use the PCA tools available in scikit-learn
(Pedregosa et al. 2011) to linearly transform our original
features {M(λi)} to an equivalent, but uncorrelated, 13-
component PCA basis, in which the components are ordered

according to their corresponding variance within the sample:5

() ()

[() ()] () ()

()M i

M M k

, 1 ,.., 13

, 1 ,.., 13 . 16

i
i

i
k

i

1

13

ål a

l m

=

´ - =
=

Figure 5 shows the cumulative explained variance ratio as a
function of the number of included PCA components. We see
that the first principal component alone already accounts for as
much as 96.4% of the variance in the data. Incorporating just
one more PCA component brings up the total explained
variance to over 99%, and the information gain beyond the first
three PCA components is very minimal, as has also been
discussed in Hayes et al. (2020).

4.2. PCA as Dimensionality Reduction

Figure 5 suggests that we can successfully use just the first
few PCA components to represent the data. The numerical
values of the coefficients ()

i
ka for the first three PCA

components (k= 1, 2, 3) are listed in Table 1. Upon inspection,
we recognize that the weights with which the individual M(λi)
enter the first PCA component are almost equal. This implies
that the first PCA component is closely related to the average
value (μ(M)) already discussed before. This correlation is, in
fact, almost perfect, as illustrated by the scatter plot with
25,000 points in the left panel of Figure 6. By a similar
argument, we arrive at the conclusion that the second principal
component reflects the overall slope of the spectrum M(λ),
which, in turn, is related to the standard deviation σ(M). This is
illustrated in the right panel of Figure 6.
The effectiveness of the dimensionality reduction achieved

through the PCA is illustrated in Figure 7, which is the exact
analog of Figure 4, only this time plotted in the plane of the
first and second PCA components (the plots in the top row) or
in the plane of the second and third PCA components (the plots

Figure 5. The cumulative explained variance ratio as a function of the number
of included PCA components.

4 For completeness, we also considered other measures of location (the
median) and variability (the range and the average slope), but the results were
very similar to Figure 4.

5 As Equation (16) implies, we choose to center but not scale the features,
since the shapes of their distributions are already very similar.

6

The Planetary Science Journal, 3:205 (12pp), 2022 September Matchev, Matcheva, & Roman

Matchev et al. 2022

Spectral clustering of exoplanets

•Turns out that most of your information in your
spectral data can be described by only 2 - 3
principal components

We use the K-means clustering tool in scikit-learn to
analyze the benchmark data set. After standardizing the PCA
components, we perform the clustering in the full 13-
dimensional PCA space. Figure 9 shows our results for four
clusters, plotted in the same two PCA planes as Figure 7: the

first and second PCA components are in the left panel, and the
second and third PCA components are in the right panel. Upon
comparison with Figure 7, we see that the K-means algorithm
correctly identified the four interesting regions discussed
earlier: the cloud branch (blue points), the water branch

Figure 7. The same as Figure 4, but plotted in the plane of the first and second PCA components (top row) or the plane of the second and third PCA components
(bottom row).

Figure 8. The same as Figure 7, but plotted in the plane of the first two ISOMAP components.

Figure 9. The results from K-means clustering with four clusters in the two PCA planes of Figure 7. Note that the clustering was performed in the full 13-dimensional
space of standardized PCA components, with the results then being plotted in two dimensions only for visualization purposes. The four clusters found by the algorithm
are color-coded with blue, green, yellow, and black.

8

The Planetary Science Journal, 3:205 (12pp), 2022 September Matchev, Matcheva, & Roman

Matchev et al. 2022

Spectral clustering of exoplanets

Clustering (k-means)

https://scikit-learn.org/stable/modules/clustering.html

•The PCA components show distinct features… can we
cluster them? - Yes

• Many clustering algorithms exist. All the good ones are
on sklearn and you can try them all easily

Source: Wikipedia

•Given a number of given clusters, it calculates the
position of the cluster mean (i.e. centre) that minimises
both the distance of the surrounding points and the
variance around the mean

K-means

Google Colab notebook:

https://bit.ly/ExoAI_PCA

/imagine prompt: A random forest

Random Forest regression

Decision tree regression

λ > 2.5
1 < λ < 2.5

λ < 1
100

0

50

1 2 3

R

λ

•Decision tress are a supervised machine learning technique

•They find a mapping between data (X) and labels/results (Y)

R < 50 R > 50

Y

R < 25 R > 25

Random Forest regression

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

Data

Prediction

• Individual Trees are not very good predictors (they
are called ‘weak predictors’)

•By averaging many weak predictors you get a strong
predictor

•Averaging/summing many trees is called
‘ensembling’

Using Random Forrests to classify a hot Jupiter

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

LETTERSNATURE ASTRONOMY

the predicted and real values, albeit with some scatter. To verify that
the scatter is due to intrinsic model degeneracies (physics) and not
due to our implementation of the random forest method itself, we
performed other suites of calculations with different numbers of
regression trees and noise floors (see Methods).

This comparison between the predicted versus real parameter
values provides a rough estimate of the minimum values of the
parameters to which the retrieval is sensitive, given the noise model
assumed (a constant 50 ppm in our case). For example, the linear
trend between the predicted versus real values of the volume mix-
ing ratios of water, hydrogen cyanide and ammonia starts to flatten
below ~10−6, suggesting that volume mixing ratios below 1 ppm are
undetectable given the WFC3 transmission spectrum of WASP-12b.

Second, we can use our approach to analyse the information con-
tent of the measured WFC3 transmission spectrum. While informa-
tion content analysis has been previously considered6,19,20, we offer a
complementary analysis and show that this is a natural outcome of
the random forest method, called the feature importance analysis.
Figure 4 shows the relative weight of each of the 13 data points in
the WFC3 transmission spectrum towards determining the value
of each parameter. Physical intuition tells us that the data points at
around 1.4 μ m are the most constraining for the water abundance.
The feature importance analysis shows that the two data points near

1.4 μ m contain about 30% of the information that goes towards
constraining the volume mixing ratio of water. The two bluest data
points contain more than 40% of the information needed to con-
strain the cloud opacity, because they quantify the flatness of the
spectral continuum. The two reddest data points are most con-
straining for hydrogen cyanide.

There are straightforward extensions of random forest retrieval
for which no conceptual obstacles exist. We have demonstrated the
method on a spectrum with 13 data points, but the random for-
est method has been shown to work well even for 1,000–10,000
data points21–25. This property implies that random forest retrieval
is applicable to future James Webb Space Telescope (JWST) spec-
tra spanning a broader range of wavelengths with ~100–1,000 data
points26. The information content analysis may be used to influence
observational campaigns and the design of spectrographs, depend-
ing on the intended scientific goal.

Another straightforward extension is to train a random forest
once and apply it to an ensemble of spectra. In the current study, we
picked a specific object (WASP-12b) to demonstrate our method.
There is no conceptual obstacle to making model grids where the
surface gravity is allowed to vary. The random forest is trained on
this larger grid, but the value of the surface gravity may be fixed to
the measured value of a specific object during analysis with no need

−8

−4

0

X
H

2O

−8

−4

0

X
H

C
N

−8

−4

0

X
N

H
3

1,000 2,000 3,000

T (K)

−6

−3

κ 0

−8 −4 0
XH2O

−8 −4 0
XHCN

−8 −4 0
XNH3

−6 −3
κ0

1.0 1.2 1.4 1.6

Wavelength (µm)

1.42

1.44

1.46

1.48

1.50

(R
/R

)
2 (

%
)

Circles: WASP-12b data
Squares: model (binned)

1,000

2,000

3,000

T
 (

K
)

Fig. 2 | Posterior distributions of the volume mixing ratios, temperature and cloud opacity obtained from the nested-sampling retrieval. The logarithm
(base ten) of the volume mixing ratios (relative molecular abundances) of H2O, HCN and NH3, and of cloud opacity (κ0) are shown. Within each scatter
plot, each dot is an individual prediction of a single regression tree in the random forest. The straight lines indicate the median values of the parameters.
Note that the volume mixing ratios and cloud opacity are associated with a factor (P0!= !10!bar) due to the normalization degeneracy. Top right: the
measured versus best-fit model transmission spectra, where R is transit radius and R★ is stellar radius.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy 721

Data

Prediction

• Radom Forests are an ensemble of multiple decision trees

• One of the oldest and most stable machine learning methods

• Individual Forrests are by nature interpretable (ensembles not)

• Easy and fast to train

• Do not generalise as well as deep learning and struggle to cope
with large data sets

Feature importance in Random Forrests

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

LETTERSNATURE ASTRONOMY

the predicted and real values, albeit with some scatter. To verify that
the scatter is due to intrinsic model degeneracies (physics) and not
due to our implementation of the random forest method itself, we
performed other suites of calculations with different numbers of
regression trees and noise floors (see Methods).

This comparison between the predicted versus real parameter
values provides a rough estimate of the minimum values of the
parameters to which the retrieval is sensitive, given the noise model
assumed (a constant 50 ppm in our case). For example, the linear
trend between the predicted versus real values of the volume mix-
ing ratios of water, hydrogen cyanide and ammonia starts to flatten
below ~10−6, suggesting that volume mixing ratios below 1 ppm are
undetectable given the WFC3 transmission spectrum of WASP-12b.

Second, we can use our approach to analyse the information con-
tent of the measured WFC3 transmission spectrum. While informa-
tion content analysis has been previously considered6,19,20, we offer a
complementary analysis and show that this is a natural outcome of
the random forest method, called the feature importance analysis.
Figure 4 shows the relative weight of each of the 13 data points in
the WFC3 transmission spectrum towards determining the value
of each parameter. Physical intuition tells us that the data points at
around 1.4 μ m are the most constraining for the water abundance.
The feature importance analysis shows that the two data points near

1.4 μ m contain about 30% of the information that goes towards
constraining the volume mixing ratio of water. The two bluest data
points contain more than 40% of the information needed to con-
strain the cloud opacity, because they quantify the flatness of the
spectral continuum. The two reddest data points are most con-
straining for hydrogen cyanide.

There are straightforward extensions of random forest retrieval
for which no conceptual obstacles exist. We have demonstrated the
method on a spectrum with 13 data points, but the random for-
est method has been shown to work well even for 1,000–10,000
data points21–25. This property implies that random forest retrieval
is applicable to future James Webb Space Telescope (JWST) spec-
tra spanning a broader range of wavelengths with ~100–1,000 data
points26. The information content analysis may be used to influence
observational campaigns and the design of spectrographs, depend-
ing on the intended scientific goal.

Another straightforward extension is to train a random forest
once and apply it to an ensemble of spectra. In the current study, we
picked a specific object (WASP-12b) to demonstrate our method.
There is no conceptual obstacle to making model grids where the
surface gravity is allowed to vary. The random forest is trained on
this larger grid, but the value of the surface gravity may be fixed to
the measured value of a specific object during analysis with no need

−8

−4

0

X
H

2O

−8

−4

0

X
H

C
N

−8

−4

0

X
N

H
3

1,000 2,000 3,000

T (K)

−6

−3

κ 0

−8 −4 0
XH2O

−8 −4 0
XHCN

−8 −4 0
XNH3

−6 −3
κ0

1.0 1.2 1.4 1.6

Wavelength (µm)

1.42

1.44

1.46

1.48

1.50

(R
/R

)
2 (

%
)

Circles: WASP-12b data
Squares: model (binned)

1,000

2,000

3,000

T
 (

K
)

Fig. 2 | Posterior distributions of the volume mixing ratios, temperature and cloud opacity obtained from the nested-sampling retrieval. The logarithm
(base ten) of the volume mixing ratios (relative molecular abundances) of H2O, HCN and NH3, and of cloud opacity (κ0) are shown. Within each scatter
plot, each dot is an individual prediction of a single regression tree in the random forest. The straight lines indicate the median values of the parameters.
Note that the volume mixing ratios and cloud opacity are associated with a factor (P0!= !10!bar) due to the normalization degeneracy. Top right: the
measured versus best-fit model transmission spectra, where R is transit radius and R★ is stellar radius.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy 721

•Perturbation based analysis gives understanding of what data has greatest impact

Input data

Output classification

LETTERS NATURE ASTRONOMY

for retraining. In the study of stars and brown dwarfs, model grids
spanning different ages, luminosities, radii, gravities and cloud con-
figurations have traditionally been used to analyse ensembles of
objects27–29. It is conceivable that model grids produced by different
research groups could be used to perform retrievals even if the com-
puter codes used to generate these grids are proprietary.

For the current study, we have shown that more sophisticated
models are not necessary to analyse the WFC3 spectrum of WASP-
12b. However, there is nothing to prevent more sophisticated models
being considered. For example, using the non-isothermal model of
ref. 11 in tandem with the non-grey cloud model of ref. 30 would add
four more parameters to the retrieval. A long-standing shortcoming

3,000 0

0

–2

–2

–4

–4

–6

–6

–8

–8

–10

–10

–12

0

–2

–4

–6

–8

–10

–12

–12

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.746

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.608

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.467

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.700

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.737

2,500

2,5
00

2,000

2,0
00

P
re

di
ct

ed
 T

(K
)

P
re

di
ct

ed
 X

H
2O

P
re

di
ct

ed
 X

H
C

N

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 X

N
H

3

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 κ 0

Real XH2O

0–2–4–6–8–10–12
Real XNH3

0–2–4–6–8–10–12
Real κ0

0–2–4–6–8–10–12

Real XHCN

1,500

1,5
00

Real T(K)

1,000

1,0
00

500

50
0

0

Fig. 3 | True versus random forest predicted values of the five parameters in our transmission spectrum model. The coefficient of determination (R2)
varies from 0 to 1, where values near unity (red dashed line) indicate strong correlations between the predicted and real values of a given parameter, on
the basis of the variance of outcomes.

0.16
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Importance for T(K) Importance for XH2O

Importance for XHCN Importance for XNH3

Importance for κ0 Importance for joint prediction

Wavelength (µm)

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.25

0.20

0.15

0.10

0.05

0.00

0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

Fig. 4 | Feature importance plots associated with the machine-learning retrieval analysis of the WFC3 transmission spectrum of WASP-12b. Values
along the vertical axis indicate the relative importance of a data point for retrieving the value of a given parameter. Within each panel, the bars add up to 1.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy722

Feature importance in Random Forrests

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

LETTERSNATURE ASTRONOMY

the predicted and real values, albeit with some scatter. To verify that
the scatter is due to intrinsic model degeneracies (physics) and not
due to our implementation of the random forest method itself, we
performed other suites of calculations with different numbers of
regression trees and noise floors (see Methods).

This comparison between the predicted versus real parameter
values provides a rough estimate of the minimum values of the
parameters to which the retrieval is sensitive, given the noise model
assumed (a constant 50 ppm in our case). For example, the linear
trend between the predicted versus real values of the volume mix-
ing ratios of water, hydrogen cyanide and ammonia starts to flatten
below ~10−6, suggesting that volume mixing ratios below 1 ppm are
undetectable given the WFC3 transmission spectrum of WASP-12b.

Second, we can use our approach to analyse the information con-
tent of the measured WFC3 transmission spectrum. While informa-
tion content analysis has been previously considered6,19,20, we offer a
complementary analysis and show that this is a natural outcome of
the random forest method, called the feature importance analysis.
Figure 4 shows the relative weight of each of the 13 data points in
the WFC3 transmission spectrum towards determining the value
of each parameter. Physical intuition tells us that the data points at
around 1.4 μ m are the most constraining for the water abundance.
The feature importance analysis shows that the two data points near

1.4 μ m contain about 30% of the information that goes towards
constraining the volume mixing ratio of water. The two bluest data
points contain more than 40% of the information needed to con-
strain the cloud opacity, because they quantify the flatness of the
spectral continuum. The two reddest data points are most con-
straining for hydrogen cyanide.

There are straightforward extensions of random forest retrieval
for which no conceptual obstacles exist. We have demonstrated the
method on a spectrum with 13 data points, but the random for-
est method has been shown to work well even for 1,000–10,000
data points21–25. This property implies that random forest retrieval
is applicable to future James Webb Space Telescope (JWST) spec-
tra spanning a broader range of wavelengths with ~100–1,000 data
points26. The information content analysis may be used to influence
observational campaigns and the design of spectrographs, depend-
ing on the intended scientific goal.

Another straightforward extension is to train a random forest
once and apply it to an ensemble of spectra. In the current study, we
picked a specific object (WASP-12b) to demonstrate our method.
There is no conceptual obstacle to making model grids where the
surface gravity is allowed to vary. The random forest is trained on
this larger grid, but the value of the surface gravity may be fixed to
the measured value of a specific object during analysis with no need

−8

−4

0

X
H

2O

−8

−4

0

X
H

C
N

−8

−4

0

X
N

H
3

1,000 2,000 3,000

T (K)

−6

−3

κ 0

−8 −4 0
XH2O

−8 −4 0
XHCN

−8 −4 0
XNH3

−6 −3
κ0

1.0 1.2 1.4 1.6

Wavelength (µm)

1.42

1.44

1.46

1.48

1.50

(R
/R

)
2 (

%
)

Circles: WASP-12b data
Squares: model (binned)

1,000

2,000

3,000

T
 (

K
)

Fig. 2 | Posterior distributions of the volume mixing ratios, temperature and cloud opacity obtained from the nested-sampling retrieval. The logarithm
(base ten) of the volume mixing ratios (relative molecular abundances) of H2O, HCN and NH3, and of cloud opacity (κ0) are shown. Within each scatter
plot, each dot is an individual prediction of a single regression tree in the random forest. The straight lines indicate the median values of the parameters.
Note that the volume mixing ratios and cloud opacity are associated with a factor (P0!= !10!bar) due to the normalization degeneracy. Top right: the
measured versus best-fit model transmission spectra, where R is transit radius and R★ is stellar radius.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy 721

LETTERS NATURE ASTRONOMY

for retraining. In the study of stars and brown dwarfs, model grids
spanning different ages, luminosities, radii, gravities and cloud con-
figurations have traditionally been used to analyse ensembles of
objects27–29. It is conceivable that model grids produced by different
research groups could be used to perform retrievals even if the com-
puter codes used to generate these grids are proprietary.

For the current study, we have shown that more sophisticated
models are not necessary to analyse the WFC3 spectrum of WASP-
12b. However, there is nothing to prevent more sophisticated models
being considered. For example, using the non-isothermal model of
ref. 11 in tandem with the non-grey cloud model of ref. 30 would add
four more parameters to the retrieval. A long-standing shortcoming

3,000 0

0

–2

–2

–4

–4

–6

–6

–8

–8

–10

–10

–12

0

–2

–4

–6

–8

–10

–12

–12

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.746

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.608

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.467

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.700

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.737

2,500

2,5
00

2,000

2,0
00

P
re

di
ct

ed
 T

(K
)

P
re

di
ct

ed
 X

H
2O

P
re

di
ct

ed
 X

H
C

N

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 X

N
H

3

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 κ 0

Real XH2O

0–2–4–6–8–10–12
Real XNH3

0–2–4–6–8–10–12
Real κ0

0–2–4–6–8–10–12

Real XHCN

1,500

1,5
00

Real T(K)

1,000

1,0
00

500

50
0

0

Fig. 3 | True versus random forest predicted values of the five parameters in our transmission spectrum model. The coefficient of determination (R2)
varies from 0 to 1, where values near unity (red dashed line) indicate strong correlations between the predicted and real values of a given parameter, on
the basis of the variance of outcomes.

0.16
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Importance for T(K) Importance for XH2O

Importance for XHCN Importance for XNH3

Importance for κ0 Importance for joint prediction

Wavelength (µm)

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.25

0.20

0.15

0.10

0.05

0.00

0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

Fig. 4 | Feature importance plots associated with the machine-learning retrieval analysis of the WFC3 transmission spectrum of WASP-12b. Values
along the vertical axis indicate the relative importance of a data point for retrieving the value of a given parameter. Within each panel, the bars add up to 1.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy722

Input data

New

Old

•Perturbation based analysis gives understanding of what data has greatest impact

Feature importance in Random Forrests

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

LETTERSNATURE ASTRONOMY

the predicted and real values, albeit with some scatter. To verify that
the scatter is due to intrinsic model degeneracies (physics) and not
due to our implementation of the random forest method itself, we
performed other suites of calculations with different numbers of
regression trees and noise floors (see Methods).

This comparison between the predicted versus real parameter
values provides a rough estimate of the minimum values of the
parameters to which the retrieval is sensitive, given the noise model
assumed (a constant 50 ppm in our case). For example, the linear
trend between the predicted versus real values of the volume mix-
ing ratios of water, hydrogen cyanide and ammonia starts to flatten
below ~10−6, suggesting that volume mixing ratios below 1 ppm are
undetectable given the WFC3 transmission spectrum of WASP-12b.

Second, we can use our approach to analyse the information con-
tent of the measured WFC3 transmission spectrum. While informa-
tion content analysis has been previously considered6,19,20, we offer a
complementary analysis and show that this is a natural outcome of
the random forest method, called the feature importance analysis.
Figure 4 shows the relative weight of each of the 13 data points in
the WFC3 transmission spectrum towards determining the value
of each parameter. Physical intuition tells us that the data points at
around 1.4 μ m are the most constraining for the water abundance.
The feature importance analysis shows that the two data points near

1.4 μ m contain about 30% of the information that goes towards
constraining the volume mixing ratio of water. The two bluest data
points contain more than 40% of the information needed to con-
strain the cloud opacity, because they quantify the flatness of the
spectral continuum. The two reddest data points are most con-
straining for hydrogen cyanide.

There are straightforward extensions of random forest retrieval
for which no conceptual obstacles exist. We have demonstrated the
method on a spectrum with 13 data points, but the random for-
est method has been shown to work well even for 1,000–10,000
data points21–25. This property implies that random forest retrieval
is applicable to future James Webb Space Telescope (JWST) spec-
tra spanning a broader range of wavelengths with ~100–1,000 data
points26. The information content analysis may be used to influence
observational campaigns and the design of spectrographs, depend-
ing on the intended scientific goal.

Another straightforward extension is to train a random forest
once and apply it to an ensemble of spectra. In the current study, we
picked a specific object (WASP-12b) to demonstrate our method.
There is no conceptual obstacle to making model grids where the
surface gravity is allowed to vary. The random forest is trained on
this larger grid, but the value of the surface gravity may be fixed to
the measured value of a specific object during analysis with no need

−8

−4

0

X
H

2O

−8

−4

0

X
H

C
N

−8

−4

0

X
N

H
3

1,000 2,000 3,000

T (K)

−6

−3

κ 0

−8 −4 0
XH2O

−8 −4 0
XHCN

−8 −4 0
XNH3

−6 −3
κ0

1.0 1.2 1.4 1.6

Wavelength (µm)

1.42

1.44

1.46

1.48

1.50

(R
/R

)
2 (

%
)

Circles: WASP-12b data
Squares: model (binned)

1,000

2,000

3,000

T
 (

K
)

Fig. 2 | Posterior distributions of the volume mixing ratios, temperature and cloud opacity obtained from the nested-sampling retrieval. The logarithm
(base ten) of the volume mixing ratios (relative molecular abundances) of H2O, HCN and NH3, and of cloud opacity (κ0) are shown. Within each scatter
plot, each dot is an individual prediction of a single regression tree in the random forest. The straight lines indicate the median values of the parameters.
Note that the volume mixing ratios and cloud opacity are associated with a factor (P0!= !10!bar) due to the normalization degeneracy. Top right: the
measured versus best-fit model transmission spectra, where R is transit radius and R★ is stellar radius.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy 721

LETTERS NATURE ASTRONOMY

for retraining. In the study of stars and brown dwarfs, model grids
spanning different ages, luminosities, radii, gravities and cloud con-
figurations have traditionally been used to analyse ensembles of
objects27–29. It is conceivable that model grids produced by different
research groups could be used to perform retrievals even if the com-
puter codes used to generate these grids are proprietary.

For the current study, we have shown that more sophisticated
models are not necessary to analyse the WFC3 spectrum of WASP-
12b. However, there is nothing to prevent more sophisticated models
being considered. For example, using the non-isothermal model of
ref. 11 in tandem with the non-grey cloud model of ref. 30 would add
four more parameters to the retrieval. A long-standing shortcoming

3,000 0

0

–2

–2

–4

–4

–6

–6

–8

–8

–10

–10

–12

0

–2

–4

–6

–8

–10

–12

–12

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.746

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.608

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.467

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.700

T < 1,600 K
T ≥ 1,600 K
R 2 = 0.737

2,500

2,5
00

2,000

2,0
00

P
re

di
ct

ed
 T

(K
)

P
re

di
ct

ed
 X

H
2O

P
re

di
ct

ed
 X

H
C

N

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 X

N
H

3

0

–2

–4

–6

–8

–10

–12

P
re

di
ct

ed
 κ 0

Real XH2O

0–2–4–6–8–10–12
Real XNH3

0–2–4–6–8–10–12
Real κ0

0–2–4–6–8–10–12

Real XHCN

1,500

1,5
00

Real T(K)

1,000

1,0
00

500

50
0

0

Fig. 3 | True versus random forest predicted values of the five parameters in our transmission spectrum model. The coefficient of determination (R2)
varies from 0 to 1, where values near unity (red dashed line) indicate strong correlations between the predicted and real values of a given parameter, on
the basis of the variance of outcomes.

0.16
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Importance for T(K) Importance for XH2O

Importance for XHCN Importance for XNH3

Importance for κ0 Importance for joint prediction

Wavelength (µm)

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.25

0.20

0.15

0.10

0.05

0.00

0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Wavelength (µm)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

R
el

at
iv

e
im

po
rt

an
ce

Fig. 4 | Feature importance plots associated with the machine-learning retrieval analysis of the WFC3 transmission spectrum of WASP-12b. Values
along the vertical axis indicate the relative importance of a data point for retrieving the value of a given parameter. Within each panel, the bars add up to 1.

NATURE ASTRONOMY | VOL 2 | SEPTEMBER 2018 | 719–724 | www.nature.com/natureastronomy722

Input data

New

Old

•Perturbation based analysis gives understanding of what data has greatest impact

Using Random Forrests

Figure 3: True versus random-forest predicted values of the five parameters in our transmission spectrum
model. The coe�cient of determination (R2) varies from 0 to 1, where values near unity indicate strong
correlations between the predicted and real values of a given parameter, based on the variance of outcomes.

Figure 4: Feature importance plots associated with the machine-learning retrieval analysis of the WFC3
transmission spectrum of WASP-12b. Values along the vertical axis indicate the relative importance of a
data point for retrieving the value of a given parameter. Within each panel, the vertical axis values sum up
to unity.

9

Figure 1: Posterior distributions of the relative molecular abundances (volume mixing ratios), temperature
and cloud opacity obtained from the machine-learning retrieval analysis of the WFC3 transmission spectrum
of WASP-12b. Shown are the logarithm (base 10) of the volume mixing ratios and cloud opacity. Within
each scatter plot, each dot is an individual prediction of a single regression tree in the random forest. The
straight lines indicate the median values of the parameters. Note that the volume mixing ratios and cloud
opacity are associated with a factor (P0/10 bar) due to the normalization degeneracy.

7

By reading out the individual outputs, you can generate Parameter distributions
Note these are NOT formal Bayesian posterior distributions

Marquez-Neila et al. 2018
see also e.g. Nixon & Madhusudan 2019

Using Random Forrests

Pro:

Con:

•Easy to implement and fast to run

• Is in principle fully interpretable, also known as a ‘white box model’

•Can easily derive Feature Importance diagnostics

•Can provide a probability over parameters, can be extended into Bayesian framework

• Does not scale well with data size

• May not be expressive enough with a realistic number of trees

• Interpretability becomes difficult for many and deep trees

Google Colab notebook:

https://bit.ly/ExoAI_RF

Using Random Forrests

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#

Interlude:
A very brief history of the origins

of deep learning

/imagine prompt: theatre curtains for an interlude

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-
intelligence-machine-learning-deep-learning-ai/

Machine Learning and Deep Learning

Hebbian learning

Hebbian learning and the perceptron

Let us assume that the persistence or repetition of a reverberatory activity tends
to induce lasting cellular changes that add to its stability. ... When an axon of cell
A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells
such that A's efficiency, as one of the cells firing B, is increased

Donald Hebb (The Organisation of Behaviour, 1949)

“

”

∑

x1

x2

x3

w1

w2

w3

y

https://en.wikipedia.org/wiki/Axon

Hebbian learning and the perceptron

∑

x1

x2

x3

w1

w2

w3

y

Hebbian learning and the perceptron

Perceptron
Rosenblatt (1958)

y = f(x) = {1 if ∑i wixi + b > 0
0 otherwise

∑

x1

x2

w1

w2

w3

y

x3
b

Hebbian learning and the perceptron

Perceptron
Rosenblatt (1958)

∑

x1

x2

w1

w2

w3

y

x3
Many nonlinearities exist:

• tanh
• sigmoid
• RELU
• Leaky RELU

Many flavours of activation functions

Yes… there is also an activation function dance…

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-
intelligence-machine-learning-deep-learning-ai/

Machine Learning and Deep Learning

Perceptron
Hebbian learning

MLPs

hidden 1

visible

Restricted
Boltzmann Machine

Deep Belief
Network

logistic

hidden 2

hidden 3

• First introduced by Rosenblatt in 1958 along with the Perceptron

• Usually trained by backpropagation (first introduced in 1970 as the
inverse of automatic differentiation. Came back into fashion in the 2010s
when GPUs became readily available.

• Calculate the derivative of the cost function using chain ruleC(y, g(x))

Single layer

y = f (∑
i

wixi + b)

hidden 1

visible

Restricted
Boltzmann Machine

Deep Belief
Network

logistic

hidden 2

hidden 3

Multi-Layer Perceptron (MLP)

g(X) := fL(fL−1(…f0(W0x + b0)))

Multi-layer Perceptron

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-
intelligence-machine-learning-deep-learning-ai/

Machine Learning and Deep Learning

Perceptron
Hebbian learning

MLPs
Deep Autoencoders
(Hinton & Salakhutdinov 2006)

Decision trees

studies were undertaken primarily on behalf of
trained personnel who would be heavy users of
these costly systems, not to appeal to discretionary
customers. Such studies were the province of
human factors and ergonomics (HFandE), not CHI,
so the engineering flavor contributed to the gap
between AI and CHI.

The Mid-1970s to the Early 1980s:
AI Winter, Springtime for HCI

Eventually, it was clear that AI had been oversold.
The bloom was again off the rose, which was to
prove to be a hardy perennial, but this time a long
downturn resulted. The 1973 British government’s
Lighthill Report on the prospects of AI was per-
ceived as being so negative that UK funding all but
vanished. In the United States, bold ARPA initia-
tives in timesharing and networking had paid off
handsomely. AI ventures had not and were scaled
back sharply. The large speech-understanding pro-
gram was terminated in 1975.

In 1977, Artificial Intelligence published an
empirical study of natural language understanding
by a group of prominent AI and incipient HCI
researchers that included Terry Winograd, Donald

Norman, and Danny Bobrow. Initiated prior to the
onset of the AI winter, the elegant study identified
usability issues and the magnitude of the chal-
lenge. With the subsequent dissolution of the col-
laboration, this may have contributed to the chill.

The AI winter lasted almost a decade, during
which human-computer interaction blossomed.
Influential HCI research labs formed at PARC, IBM,
Digital, the U.K. Medical Research Council Applied
Psychology Unit, Bell Labs, and the University of
California San Diego. These were central to the
growth of SIGCHI, which formed in 1982. The
Human Factors Society’s Computer Systems Tech-
nical Group formed and thrived. HCI also pro-
gressed in management information systems.

The UCSD cognitive psychology group con-
tributed particularly heavily. Don Norman, who
published HCI-related work in AI forums in the
1970s and 1980s, led university participation in
early CHI conferences. UCSD was also central to
the early 1980s resurgence of work on “neural
nets” or parallel distributed processing models,
and hosted the first Cognitive Science conference
in 1979. Drawing from computer science, AI, psy-
chology, and other disciplines, cognitive science
could be considered a sibling to HCI. Cognitive sci-

Articles

52 AI MAGAZINE

Dartmouth
Workshop

Turing
Letter

Strong AI
funding

and
optimism

AI
“winters”

and
downturns

IPTO
formed

Lighthill
Report

Fifth
Generation

Internet
Bubble

Sutherland’s
Sketchpad

Major HCI labs form

HCI accepted in many
CS departments

1950 1960 1970 1980 1990 2000

1950 1960 1970 1980 1990 2000

Figure 1. The Changing Seasons of AI and HCI.

Funding climate and public perception with three HCI high points.

Grudi 2009

The end of connectionism

$850M funding by Japanese
Ministry of International Trade

The collapse of LISP machines
and end of 5th Generation

The 2 AI winters

Feed forward nets
& Autoencoders

/imagine prompt: a feed forward neural network modelling exoplanet atmospheres

hidden 1

visible

Restricted
Boltzmann Machine

Deep Belief
Network

logistic

hidden 2

hidden 3

Let’s simplify our pictograms

Multi-layer perceptron (MLP)

Feed forward network

Accurate Machine Learning Atmospheric Retrieval 3

…

MARGE

Parameters
θ
i

RT Simulator
(slow)

Spectrum
s
i

RT Simulator
Surrogate

(fast)

Parameters
θ

Spectrum
s

Neural
Network
Training

HOMER Observed
spectrum
s
obs

Bayesian
sampler

Posterior

p(θ | s
obs

)

…

Figure 1. Schematic diagram of our inverse modeling
method, color-coded based on the scope of our software pack-
ages. MARGE (Section 2.3.1) generates a data set based on
a deterministic, forward process (e.g., RT) and trains a surro-
gate model to approximate that process. Using the trained
surrogate, HOMER (Section 2.3.2) infers the inverse pro-
cess (e.g., atmospheric retrieval) by simulating many forward
models and comparing them to the target data (e.g., an ob-
served spectrum) in a Bayesian framework.

a standard inference pipeline. This approach preserves
the accuracy of the Bayesian inference and, while slower
than direct ML retrieval, is still much faster than com-
puting RT.
In Section 2, we describe our approach in detail as well

as introduce the software packages that implement the
method. Section 3 discusses the results. Finally, Section
4 presents conclusions.

2. METHODS

2.1. Model Training

To train a neural network for our approach (Figure 1),
we generate a data set of spectra using the Bayesian At-
mospheric Radiative Transfer (BART) code (Harrington
et al. 2021; Cubillos et al. 2021; Blecic et al. 2021).
The atmospheric models consist of 100 log-uniform

layers spanning pressures from 10�8 to 100 bar, and we
assume that the planet radius corresponds to a pressure
of 0.1 bar. We use the five-parameter temperature–
pressure profile, T (p), parameterization of Line et al.
(2013): , the Planck mean infrared opacity; �1 and
�2, the ratios of the Planck mean visible and infrared
opacities for each of two streams; ↵, which controls the
contribution of the two streams; and �, which represents
albedo, emissivity, and energy recirculation.
We allow the radius (Rp), mass (Mp), and semima-

jor axis (a, adjusts the temperature at the top of the
atmosphere due to stellar irradiation) of the planet to
vary to encompass a range of hot Jupiters. We also in-

Table 1. Forward Model Parameter Space

Parameter Minimum Maximum

log -5.0 1.0

log �1 -2.0 2.0

log �2 -1.3 1.3

↵ 0.0 1.0

� 0.7 1.3

Rp (RJ) 0.8 1.5

Mp (MJ) 0.8 1.5

a (AU) 0.2 0.4

log H2O -13 -0.5

log CO2 -13 -0.5

log CO -13 -0.5

log CH4 -13 -0.5

clude a free parameter for each of the uniform vertical
abundance profiles of H2O, CO2, CO, and CH4.
We allow a wide range of values without regard for

physical plausibility, except by enforcing that (1) the
H2/He ratio remains constant, (2) the total relative
abundances of molecules in the atmosphere equals 1,
and (3) the T (p) profile does not exceed the tempera-
ture range of the line lists. For example, this could lead
to models with H2O at conditions where it dissociates
(Arcangeli et al. 2018), though, in the case of HD 189733
b, such models would be rejected with a high probabil-
ity due to a poor fit. We note that these are not fun-
damental constraints of our approach; other constraints
(e.g., enforcing thermochemical equilibrium, keeping el-
emental ratios within some range) may be used when
generating the data set to train the surrogate model.
For opacities, we use HITEMP for H2O, CO, and CO2

(Goorvitch 1994; Tashkun et al. 2003; Barber et al. 2006;
Rothman et al. 2010), HITRAN for CH4 (Niederer et al.
2008; Boudon et al. 2010; Nikitin et al. 2010, 2011;
Brown et al. 2013; Campargue et al. 2013; Daumont
et al. 2013; Niederer et al. 2013; Nikitin et al. 2013;
Rothman et al. 2013), and collision-induced absorptions
of H2-H2 and H2-He (Borysow et al. 2001; Borysow 2002;
Abel et al. 2012; Richard et al. 2012). While there are
newer line lists available with a greater number of lines
(e.g., Hargreaves et al. 2020), these tests are meant to
demonstrate consistency between neural network-based
and non-ML retrievals; we therefore use the setup de-
scribed in Harrington et al. (2021), which uses this set
of line lists to compare with previous studies. As our
approach learns RT from a data set of spectra, it is not
tied to any specific line lists.
To train our neural network surrogate model, we

generate 3,458,432 spectra, which are subdivided into

Accurate Machine Learning Atmospheric Retrieval 7

Figure 2. Four comparisons of planetary emission spectra predicted by MARGE and calculated by BART. The smoothed
curves use a Savitzky-Golay filter with a third-order polynomial across a window of 101 elements (100 cm�1). The purple color
arises due to a detailed match between the red and blue spectra at high resolution

. For the residuals, a black line is plotted at 0 to show regions where the neural network consistently over- or underpredicts
the spectrum. A histogram of the high-resolution residuals appears to the right of the residual scatter plot, where the x-axis
shows the probability density function (PDF) for the range of residual percentages. Top left: Case with T (p) profile that

increases in temperature with altitude, with H2O and CO2 emission lines. Top right: Case with T (p) profile that decreases in
temperature with altitude, with absorption primarily due to CH4 and H2O. Bottom left: Cases with T (p) profile that has an
inversion around 0.1 bar, with CH4, CO, and CO2 absorption and emission features. Bottom right: Case with T (p) profile

that is nearly isothermal at the pressures with sensitivity.

3.1. Limitations

HOMER’s accuracy is, by nature, bound by the accu-
racy of the neural network model. Model inaccuracies
may slightly bias the results, as seen in the minor di↵er-
ences between the posteriors of HOMER and BART. In
our application, this discrepancy does not significantly
a↵ect the scientific conclusions at the spectral resolution
of these observations for the current neural network ac-
curacy.
However, this does not necessarily hold for all cases.

While in theory MARGE works for any spectral reso-
lution, users will need to carefully select the model ar-
chitecture to ensure that it can accurately model the
spectra over the desired phase space. It is also possible
that at higher resolutions the neural network’s minor in-

accuracies can drive the Bayesian sampler to radically
di↵erent results. In situations lacking a physics-based
retrieval to compare with, we advise testing to ensure
that forward models are reasonably accurate over the
retrieval’s phase space, as some regions may not be suf-
ficiently sampled for accurate predictions.

3.2. Compute Cost

The performance di↵erences between HOMER and
BART highlight HOMER’s computational benefits. For
a single Markov chain iteration, BART requires around
1.8 seconds per parallel chain on an AMD EPYC 7402P
CPU, and multiple chains parallelize linearly across
CPUs. By comparison, a single iteration with HOMER
on the same CPU — which includes pre-processing (e.g.,
input normalization), prediction, post-processing (e.g.,

Himes et al. 2021

Replacing the slow astrophysical model with a faster Neural Network surrogate

Neural Network surrogate models

Maintaining traditional Bayesian sampling to calculate parameter distributions

encourage users to contribute to the code via pull requests on
Github.

2.3.1. MARGE

The Machine learning Algorithm for Radiative transfer of
Generated Exoplanets9 (MARGE, Figure 1) (1) generates a
data set based on a user-supplied function, (2) processes the
generated data using a user-supplied function, and (3) trains,
validates, and tests a user-specified neural-network architecture
on a data set. The software package allows independent
execution of any of the three modes, enabling a wide range of
applications beyond exoplanet retrieval.

MARGE’s design allows it to be applied to any deterministic
model. For 1D data (such as spectra), MARGE’s desired format
is NumPy binary (.npy) files of 2D arrays, where each row
corresponds to a single case. Each row is a data vector of the
input parameters followed by the output data (e.g., spectrum).
MARGE currently includes data-generation and -processing
functions for BART as well as a data-processing function for
the pypsg10 Python interface (Soboczenski et al. 2018) for the
NASA Planetary Spectrum Generator (Villanueva et al. 2018).
We encourage users to contribute code via pull request to

handle the processing of the inputs/outputs of other software
packages.
We implement neural-network model training in Keras

(version 2.2.4, Chollet et al. 2015), using a Tensorflow (version
1.13.1, Abadi et al. 2016) backend. MARGE enables early
stopping by default to prevent overfitting, and the user can halt
or resume training. MARGE allows for cyclical learning rates
for more efficient training (Smith 2015; see also Appendix A).
Users specify the model architecture details and the data
location, and the software handles the data normalization,
training, validation, and testing. MARGE preprocesses the data
into Tensorflow’s TFRecords format for efficient handling.
Users have multiple options when preprocessing the data,
which include taking the logarithm of the inputs and/or
outputs, standardizing the data according to its mean and
standard deviation, and/or scaling the data to be within a
specified range. The mean and standard deviation of the data
set are computed using Welford’s method (Welford 1962) to
avoid the need to load the entire data set into memory at once.
MARGE computes the RMSE and R2 for predictions on the
validation and test sets to evaluate model performance; these
metrics can optionally be calculated over integrated filter
bandpasses. Finally, users may specify cases from the test set to
plot the predicted and true spectra, with residuals (e.g.,
Figure 2).

Figure 2. Four comparisons of planetary emission spectra predicted by MARGE and calculated by BART. The smoothed curves use a Savitzky–Golay filter with a
third-order polynomial across a window of 101 elements (100 cm−1). The purple color arises due to a detailed match between the red and blue spectra at high
resolution. For the residuals, a black line is plotted at 0 to show regions where the neural network consistently over- or underpredicts the spectrum. A histogram of the
high-resolution residuals appears to the right of the residual scatter plot, where the x-axis shows the probability density function (PDF) for the range of residual
percentages. Top left: case with T(p) profile that increases in temperature with altitude, with H2O and CO2 emission lines. Top right: case with T(p) profile that
decreases in temperature with altitude, with absorption primarily due to CH4 and H2O. Bottom left: cases with T(p) profile that has an inversion around 0.1 bar, with
CH4, CO, and CO2 absorption and emission features. Bottom right: case with T(p) profile that is nearly isothermal at the pressures with sensitivity.

9 MARGE is available at https://github.com/exosports/marge.
10 https://gitlab.com/frontierdevelopmentlab/astrobiology/pypsg

4

The Planetary Science Journal, 3:91 (12pp), 2022 April Himes et al.

Doing a good job at approximating the radiative transfer model

Himes et al. 2021

Radiative transfer parameters
(Mol abundances, Rp, Tp, etc)

Final spectrum

Conv1D (256) + LRelu

Dense (4096) + LRelu

Dense (4096) + LRelu

Dense (4096) + LRelu

Conv1D (n_spectra)

Input (12)

Reproducing their model in PyTorch

Himes et al. 2021

King & Ba 2014

Autoencoders

Read chapter 14 in: https://www.deeplearningbook.org/

Multi-layer perceptron (MLP)

Feed forward network

Autoencoders

Read chapter 14 in: https://www.deeplearningbook.org/

Latent Variable (z)

In
pu

t

O
ut

pu
t

Cost function = Input - Output

- Output must equal input

- Self-supervised learning

- Non-linear data
compression and
clustering

- Not probabilistic but
variational autoencoders
are an easy modification

Modelling time evolution of ODEs in chemical networks

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

units [GPUs], or performance analysis and tuning), which can
lead to a moderate speed-up. However, vectorization is prac-
tically limited by how e↵ectively mathematical operators can
be computed in parallel across array elements (e.g. Tian et al.
2013). GPU-based methods are meanwhile limited by the techni-
cal specifications of the hardware (Curtis et al. 2017). Certainly,
these approaches reduce the cost, but they are still far from elim-
inating the numerical bottleneck that is computational chemistry.

Another approach is to make linear fits to complex reaction
rate coe�cients that may depend on exponential or logarithmic
functions. This reduces the cost of evaluating f (x̄; k) and the
Jacobian (@ fi/@x j), but does not remove the complexity of the
problem itself, and therefore only achieves a relevant, but rela-
tively moderate, speed-up.

Among other more generic solutions, some ODE solvers can
take advantage of the sparsity of Jacobian matrices, a distin-
guishing feature of the chemical ODE systems. Applying a com-
pression algorithm to the Jacobian can reduce the computational
cost considerably (Du↵ et al. 1986; Hindmarsh et al. 2005; Ne-
jad 2005; Perini et al. 2012), but the time required to solve the
chemical network over time in several astrophysical applications
remains still non-negligible.

More commonly however, both in astrophysics and in chem-
ical engineering, the computational impact of the chemistry is
reduced by determining which reactions are relevant for a given
problem, for example via expert inspection (e.g. Glover & Clark
2012; Gong et al. 2017), or via rate e�ciencies evaluation (e.g
Grassi et al. 2012; Xu et al. 2019). However, these methods may
fail to reproduce the detailed evolution of less abundant species,
or may become ine↵ective when the network cannot be substan-
tially reduced (e.g. because the reactions contribute to the sti↵-
ness of the system).

In more recent years, machine learning and Bayesian meth-
ods are beginning to be exploited, in particular because of the
emergence of a number of tools that allow these techniques to be
implemented with relative ease (e.g. Grassi et al. 2011; de Mi-
jolla et al. 2019; Heyl et al. 2020). In particular, (deep) neural
networks have been employed to predict the evolution in time
of the chemical abundances and temperature (recently termed
“emulators”), and replace the ODE solver within the parameter
space described by the supplied training data. This approach is
certainly one of the most promising to negate the computational
cost of solving chemistry, but it has so far been limited by com-
plicated (and not necessary successful) neural network training
sessions, error propagation, and a lack of interpretability. Inter-
pretability, i.e. have a certain degree of machine learning model’s
transparency (Lipton 2016; Miller 2017), can become relevant
when the input conditions of the neural network lie outside the
training, test, and/or validation sets, or if the training is a↵ected
by unnoticed under-/over-fitting to the data. This limit to inter-
pretability resides in the intrinsic design of deep neural networks
(DNNs), i.e. thousands of parameters that define the interac-
tion of non-linear functions. For comparison, analogous machine
learning techniques, such as principal component analysis, have
some degree of interpretability (Shlens 2014), while DNNs ap-
plied to chemistry apparently do not (Chakraborty et al. 2017).
Despite these drawbacks, given the constant improvement of ma-
chine learning techniques and hardware, deep machine learning
techniques are one of the most promising reduction methods for
chemistry proposed in the last several years.

The technique presented in this paper is somewhat in be-
tween the methods described above. We want to take advan-
tage of the capability of DNNs to find simplified representa-
tions of complex chemical networks, but coupled with the time-

time

x(t)

encoding decodingφ ψ
z(t)

time

PH
YS

IC
AL

 s
pa

ce
LA

TE
N

T
sp

ac
e

ODE → x=f(x; k)

ODE → z=g(z; p)

C
CHH

OH O
HCO

A

B

x∈ℝN

z∈ℝM

Fig. 1. Graphical representation of the proposed method. The evolution
of the chemical species x̄(t) in the physical space is usually obtained
by integrating f (x̄; k) in time (upper panel). This can be reconstructed
by evolving a di↵erent set of variables in the latent space z̄(t) by using
the g(z̄; p) (lower panel). The transformation between the two spaces
is obtained with an encoder (') and a decoder (). The physical space
has N chemical species/dimensions (N = 6 in this schematic), while the
latent space has M < N variables/dimensions (M = 2 in this schematic).
Lines schematically show how the abundances in the physical and latent
spaces might evolve with time. Sketches of the chemical networks in
the physical space and the latent space are shown on the right side. The
latent network (A⌦B) has less species and reactions, but captures the
dynamics of the full chemical network faithfully.

dependent accuracy provided by ODE solvers, while also includ-
ing the interpretability of the resulting network.

To accomplish this, we reduce the dimensionality of the
physical space with an encoder (') in order to create the so-
called latent space (see Fig. 1). In the latent space, the N abun-
dances of species, x̄, are represented by another set of M (< N)
abundances: z̄. We then postulate that these variables belong to
another chemical network defined in the latent space. Analo-
gously to the chemical network in the physical space, i.e., that is
represented by the system of ODEs f (x̄; k) in Eq. (1), the chem-
ical network in the latent space still evolves following a set of
di↵erential equations (albeit a di↵erent set), g(z̄; p), where the
parameters p play the same role as the rate coe�cients k do in the
physical space. Using g, it is possible to evolve z̄(t) forward in
time in the latent space. Next, a decoder () transforms the vari-
ables, z̄(t), back to the physical abundances, x̄(t). Our method
aims at finding the encoder ', decoder , and the operator g,
which then allows us to obtain x̄(t) from the evolving z̄(t), which
has a significantly smaller number of dimensions and hence is
much less computationally expensive to integrate.

2.3. Autoencoders

Autoencoders are a widely used machine learning techniques in
many disciplines that incorporate symmetric pairs of deep neu-
ral networks, and have applications in denoising images (e.g.
Gondara 2016), generating original data with variational autoen-
coders (e.g. Kingma & Welling 2013), detecting anomalies in
images and time-series (e.g. Zhou & Pa↵enroth 2017), and, more
relevant to this work, to reduce the dimensionality of data (e.g.

Article number, page 3 of 14

A&A proofs: manuscript no. main

Kramer 1991). Autoencoders are a non-linear generalization of
principal component analysis (Jolli↵e 2002) with trainable pa-
rameters, which makes them suitable for all kinds of dimensional
reduction tasks, including reducing the complexity of chemical
networks.

Given a set of N-dimensional data, x̄ 2 RN , an autoencoder
consists of two operators, namely an encoder (' as RN ! RM)
and a decoder (as RM ! RN), which are optimized to have
x̄ ' x̄0 = ('(x̄)), i.e., the autoencoder should be capable of
reproducing the input data within a given accuracy. The first op-
erator produces the encoded data z̄ = '(x̄), where z̄ 2 RM , with
M < N (upper part of Fig. 2). The second operator then recon-
structs/decodes z̄ to retrieve x̄0 = (z̄). The space where x̄ resides
is called the physical space, while z̄ belongs to the latent space.
The latent space has a lower dimensionality relative to the phys-
ical space. The reconstruction error in x̄0 is the `2-norm between
the original and the reconstructed data

L0 = ||x̄ � x̄0||22 , (3)

where L0 = 0 represents perfect reconstruction. If x̄ has been
reconstructed properly (i.e. x̄ = x̄0), the amount of information
is conserved through the autoencoder, and hence the information
contained in z̄ is su�cient to represent x̄, but with the advantage
of a lower dimensionality. In Fig. 2 (upper part), we schemat-
ically show the autoencoder as a set of layers of a deep neu-
ral network. The first layer on the left is the input layer with
N nodes (also called neurons), which is connected to a second
hidden layer, h̄0, by weights W0

i j and biases b0
j (not shown) via

h̄0 = Fa(W ⇥ x̄ + b̄), where Fa is a so-called activation function.
We add hidden layers, each with less nodes than the previous
layer, until the layer marked with z̄ is reached. This layer has M
nodes and is the representation of x̄ in the latent space. The de-
coder works in an analogous way, connecting z̄ to x̄0 via several
hidden layers with weights and biases between the layers, with
each layer having a larger number of nodes until reaching the
last, output layer that consists of N nodes (i.e. the same number
of nodes as the input layer). The aim of the neural network train-
ing is then to find the optimal values for the weights W`

i j and the
biases b`j that minimize the loss L0 by using a gradient descent
technique and an optimizer method that computes the adaptive
learning rates for each parameter (Rumelhart et al. 1988; Lecun
et al. 1998).

In a chemical network, x̄ represents the abundances of the
N chemical species that compose the network. In a successfully
trained autoencoder, z̄ = '(x̄) represents the N chemical abun-
dances x̄ in the latent space with M < N variables. In other
words, the latent space contains the same information as the
physical space, but in a compressed format with less variables.
However, with only a pure autoencoder, some important infor-
mation (in particular, the time derivatives of the abundances)
cannot easily be inferred, and the latent space has no obvious
chemical or physical interpretation. For this reason, we need to
extend the deep neural network autoencoder with an additional
“branch”.

2.4. Differential equation identification in latent space via
autoencoders

To enable the interpretability of the encoded data we need to
have access not only to z̄, but also to the time derivative ˙̄z. We fol-
low an approach similar to Champion et al. (2019), that couples
autoencoders with a “sparse identification of nonlinear dynam-
ics” algorithm (SINDy; Brunton et al. 2016). SINDy consists of a

x

ODE

z

x'
zph

ys
ic
al

latent

ph
ys
ic
al

g(z)

ENCODER φ(x) DECODERψ(z)

Wij
0

pi

Wij
1 Wij

4 Wij
5Wij

2 Wij
3

h0 h1 h2
h3

x'
g(z)∂zψ(z)

latent

Fig. 2. Schematic of the autoencoder and latent ODE system. The up-
per part of the sketch represents the autoencoder, with both encoder
and decoder deep neural networks. Each rectangle represents a layer
of the deep neural network, linked together by weights W and biases b
(omitted for the sake of clarity). The input to the encoder is x̄, with N
nodes/dimensions, connected to a sequence of hidden layers hi with de-
creasing dimensionality/number of nodes, until reaching the layer z̄ with
M nodes/dimensions, where the maximum compression is obtained.
The decoder is symmetric w.r.t. the encoder, with layers of increas-
ing dimensionality, ending with an output layer of N nodes/dimensions.
Note that, in our case, we have 6 hidden layers instead of the 4 shown
in this sketch. In the lower part of the sketch, we show the latent ODE
system that uses z̄ as inputs and produces ˙̄z as output, both with M di-
mensions. This additional neural network is controlled by the parame-
ters p (one for each latent reaction), and has an analytical representation
g(z̄; p). The obtained latent space derivatives are decoded to the target
derivatives ˙̄x with the same procedure as of Eq. (5).

library of (non-)linear functions (e.g. constant, polynomial, and
trigonometric) whose activation is controlled by a set of param-
eters that determine the importance of each term (i.e. weights),
and is intended to represent the right-hand side of a generic non-
linear system of ODEs. Rather than using the SINDy algorithm
directly, we instead use the time derivatives as additional con-
straints and employ a set of functions that mimic the right-hand
side of a chemical ODE system during the training phase.

The time derivative2 of the latent variables, @t z̄ = @t'(x̄), af-
ter a change of variables, can be written as ˙̄x @x'(x̄). Since we are
seeking a “compressed” chemical network in the latent space,
we also define ˙̄z = g(z̄; p) as analogous to Eq. (2), where p are
the unknown latent rate coe�cients. This allows us to define an
additional `2-norm loss,

L1 = ||g(z̄; p) � ˙̄x @x'(x̄)||22 , (4)

that we can minimize on during training.
Analogously, ˙̄x can be written as ˙̄z @z (z̄), and we can define

the corresponding loss term

L2 = || ˙̄x � g(z̄; p) @z (z̄)||22 , (5)

where ˙̄x is known from the chemical evolution in the physical
space. L1 and L2 are the losses that control the reconstruction of
˙̄x and ˙̄z, by constraining ', , and g at the same time.
2 We define @t ⌘ @/@t, @x ⌘ @/@x, and @z ⌘ @/@z.

Article number, page 4 of 14

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

Fig. 8. Time derivatives of the encoded data, '̇(x̄) (solid lines), com-
pared to the latent ODEs, g(z̄) (dashed), both as a function of time. The
di↵erent colors denote the di↵erent components of the latent space.

the user defines which species play a key role in L0. Another ap-
proach which may prove beneficial in some contexts is to use the
di↵erence between the relative abundances of the species, rather
than the absolute one. Analogous considerations apply to L1, L2,
and L3.

Concerning the present study, the adopted chemical network
and the resulting data have a limited amount of variability. Not in
terms of the evolution of the chemical abundances (see Fig. 4),
but rather in terms of the limited initial conditions. In fact, a
constant temperature and cosmic-ray ionization rate translates
into time-independent reaction rate coe�cients k, and thus the
same holds true for the corresponding coe�cients p in the latent
space. The evolution of the temperature is a key aspect in many
astrophysical models, and hence it should be included as an addi-
tional variable and evolved alongside the chemical abundances.
Indeed, since our current model produces an interpretable repre-
sentation in the latent space, adding the temperature might lead
to a system of latent ODEs g that gives additional insights on the
interplay between chemistry and thermal processes. This will be
addressed in future work.

A key aspect and the final goal of our method is to obtain
a “universal” set of di↵erential equations in the latent space (g)
that, within a given approximation error, e↵ectively replaces the
analogous function in the physical space (f). If such a system
exists, in principle any trajectory x̄(t) produced by applying f (x̄)
has its own corresponding trajectory z̄(t) that can be advanced
in time by applying g(z̄). If this achievement is obtained, any
arbitrarily uncorrelated test set of models can be reproduced by
our trained framework, as far as this test set is produced by using
f . Within this context, in this paper we are not obtaining such a
result because (i) the functions g is not the latent representation
of f , and/or (ii) the autoencoder is not a su�ciently accurate
compressed representation of the physical space.

In (magneto)hydrodynamic simulations, the
(thermo)chemical evolution is often included using an operator
splitting technique, i.e., alternating between (thermo)chemical
evolution and dynamics (but with a communally determined
time step). In the current implementation of our method, this
implies that x̄(t) needs to be encoded to z̄(t), evolved with g in
the latent space to z(t+�t), and decoded again to x̄(t+�t) during
each dynamical time step. This could result in a significant cost
overhead if the computational time saved by solving g instead

of f is smaller than the time spent applying ' and . In the
present test, the time spent for one encode/decode is negligible
(. 0.008 s) when compared to integrating f directly (⇠ 6.5s).
However, avoiding the need to encode/decode each time step
when coupling this method to a dynamical simulation will be
addressed in a future work.

In simulations that solve (thermo)chemistry and dynamics
together via operator splitting, care must be taken to minimize
the propagation of errors in the chemical abundances over time
due to the advection of species. This can be dealt with using
so-called “consistent multi-fluid advection” schemes (Plewa &
Müller 1999; Glover et al. 2010; Grassi et al. 2017) that ensure
conservation of, e.g. the metallicity. Analogously, it might be
possible within the current method to include additional losses
designed to conserve elemental abundances (in our case, H, C,
and O)

The method presented in this study shows promising results,
and represents a novel approach to the problem of reducing the
computational impact of modeling (thermo)chemical evolution,
particularly in the context of large scale dynamical simulations.
However, several limitations present in the current implemen-
tation suggest that further exploration and a deeper analysis of
the methodology are required. It is clear however that machine
learning is a rapidly and continually growing field, and that faster
and more capable hardware becomes available at regular inter-
vals. As such, we are confident that the class of methods to which
this study belongs will prove capable at e�ciently reducing the
computational impact of not only time-dependent chemical evo-
lution, but for other systems of astrophysically-relevant di↵eren-
tial equations.

5. Conclusions

In this work, we describe the theoretical foundations and a
first application of a novel data-driven method aimed at using
autoencoders to reduce the complexity of multi-dimensional
and time-dependent chemistry, and to reproduce the temporal
evolution of the chemistry when coupled to a learned, latent
system of ODEs.

In summary, we find that:
– This approach can reduce the number of chemical species

(i.e. dimensions) by encoding the physical space into a low-
dimensional latent space.

– This compression not only manages to preserve the informa-
tion stored in the original data, it also ensures that the evolu-
tion of the compressed variables is representable by another
set of ordinary di↵erential equations corresponding to a la-
tent “chemical network” with a considerably smaller num-
ber of reactions, and that the time-dependent chemical abun-
dances can subsequently be accurately reconstructed.

– In the proof-of-concept application presented in this work,
we are capable of reducing a chemical network with 224 re-
actions and 29 species into a compressed network with 12 re-
actions and 5 species that can be evolved forward in time
with a standard ODE solver.

– Integrating a considerably smaller chemical network in time
permits a considerable computational speed-up relative to in-
tegrating the original network. In our preliminary tests we
obtained a ⇥65 speed-up.

– The interpretability of the latent variables and ODEs pro-
vides an advantage compared to opaque standard machine
learning methods of dimensionality reduction. Moreover, in-
terpretability could allow us to better understand the intrin-

Article number, page 9 of 14

Grassi et al. 2021

Evolving complex chemical networks in compressed latent space

10 de Mijolla

Figure 2. Distribution of scaled euclidian distances, d, for a sample of chemically identical pairs of stars (blue) and fully
randomly sampled pairs of stars (orange). For each model, a scaling is applied to the latents such that the mean distance of
chemically identical stars is 1. Each model includes Te↵ , log g and [Fe/H], as the parameters to disentangle from the chemical
factors of variation. The top row is evaluated using the noiseless test dataset, the bottom with noise of order SNR=50 added.
The first column is evaluated using the FaderDis method, the second using the FactorDis method and the final row using the
PolyDis method (after PCA with 50 components).

spectra, nz is the dimensionality of the latent space and
ndata is the number of observations in the dataset. We
seek a transformation matrix A converting latents into
abundances as faithfully as possible. We can find such a
matrix by solving argminA ||AZ�V ||2 which has known
solution A = V Z+ Petersen & Pedersen (2008) with Z+

the Moore-Penrose inverse of Z. We solve this matrix
using all stars stars in the noiseless training data.
In Figure 4 we have plotted chemical compositions as

estimated from the linearly transformed latents against
true chemical compositions. These are shown for 2000
stars in the noiseless test dataset. We see a remarkable
agreement between the estimated and true abundances.
For almost all species, the linear transformation is nearly
as good at estimating chemical compositions as a neural
network trained on the latents (denoted “non-linear”) on
the same stars. Although Na is not as well fit as other
species, it is known to be particularly di�cult to esti-
mate (Ness et al. 2019; Jönsson et al. 2018). This shows

that our method has naturally learned to decompose
spectra into a representation nearly equivalent to chem-
ical abundances. Although these results were obtained
on a synthetic dataset they are particularly encouraging.
Measuring abundance variation quantitatively, without
reliance on synthetic spectra would allow for fully cir-
cumventing the uncertainties propagated from inaccura-
cies in spectral modelling.

5.4. Spectral Reconstruction

Our neural network encoder allows for converting
spectra into a representation in which predefined non-
chemical factors of variation are removed. By sub-
sequently applying the decoder to this representation,
we can generate modified spectra recast to new non-
chemical parameters.
In Figure 5, we leverage this to visually demonstrate,

for the FactorDis approach, how well our learned repre-
sentation isolates the chemical information in the spec-

Sample article 5

ݔ

ݑ

ݖ

Concatenate

Concatenate

ǡݔሺܧ ሻݑ ǡݖሺܦ ሻݑ ොݔ

Figure 1. Diagram of the conditional autoencoder architecture. We denote the reconstructed observation as x̂. For chemical
tagging, x corresponds to stellar spectra and u to phyiscal factors of variation.

loss with respect to the neural network parameters are
used to update the parameters in the direction minimiz-
ing the loss function. After training, the neural network
will have converged to parameterizing a mapping which
(locally) minimizes the loss function. Although not a
global minima, the learned mappimg, in part because of
the stochastic nature of the training process, will typi-
cally be a good minimizer of the loss function.
Our neural network, in minimizing the loss function

described by Eq. 1, simultaneously minimize reconstruc-
tion and disentanglement terms with a trade-o↵ con-
trolled by �. Minimizing the disentanglement loss term
corresponds to learning a latent representation statisti-
cally independent from factors of variation parameter-
ized by u. This is achieved by removing all related infor-
mation from the latent. The reconstruction term will be
minimized when z and u are su�cient for reconstructing
observations x. Combined, these two loss terms will be
minimized when all the information required for mod-
elling observations x not included within u is contained
within the latent z. While it may not always be possi-
ble to minimize both loss terms together, we know that
it is possible to do so for data generated as described
in 3.1. Indeed, a global minimum of the loss function
would be reached for a neural network which encoded
observations x into v and decoded back to x.
In addition to isolating unknown factors of variation,

v, we have found that, at least for the problems we have
considered, supervised disentanglement maps observa-
tions with shared parameter values v, to nearly identical
latents, z. We attribute this to our set of assumptions
(see section 3.1). This property makes some intuitive
sense when we take a moment to consider how our au-
toencoder might map observations, x, generated from a

common shared vector of unknown parameter values, v,
but each with di↵erent values of the observed param-
eters, u. If the mapping does not project all of these
observations to a common latent value, then the latent
value, z, will be informative about the parameter value
u (as some u are then more or less likely based on the
observed z). Therefore, z and u will no longer be statis-
tically independent.
In practice, our neural network will only approxi-

mately minimize our loss function and so will not per-
fectly map observations sharing common parameter val-
ues, v, to the same latent z. Observations sharing com-
mon parameter values will thus appear as over-densities
in the latent space. These over-densities can then be
identified, for example by running a clustering algorithm
such as K-means (Lloyd 1982), or by finding those ob-
servations particularly close according to some distance
metric. Alternatively, we can instead identify such ob-
servations in the data-space if we use the decoder to
convert all latents with a common set of parameters, ui.

3.3. Implementation of supervised disentanglement

We present two alternative methods, FaderDis and
Factordis, for learning a disentanglement loss Ldis en-
couraging statistical independence. FaderDis is an adap-
tation of the Fader disentanglement architecture pre-
sented in Lample et al. (2017) modified for our purposes.
FactorDis is, to our knowledge, a novel architecture for
supervised disentanglement. We present here the archi-
tectures investigated.

3.3.1. Factor Disentanglement (FactorDis)

The FactorDis method enforces independence by
training a critic network to di↵erentiate between sam-

Encoder Decoder

Disentangling Complex Chemistry in Astrochemistry

z1

z2

•Using Conditional Autoencoders to transform data (x) to a lower dimensional representation (z)

•Latent variables (z) should ideally cluster in a physically interpretable way

•Enforcing statistical separation using loss function
is an example of active explainability

Lim et al. 2018

Bayesian Neural Networks

/imagine prompt: Thomas Bayes explaining a neural network to his students in the 18th century

P(θ |D) =
P(D |θ)P(θ)

P(D)

P(D) = ∫ P(D |θ)P(θ)dθ

Recap: The Bayes theorem

Likelihood PriorPosterior

Evidence

Maximum Likelihood Estimation (MLE)
and Maximum A Posteriori (MAP)

• MLE and MAP are almost the same thing and only
differ by the prior distribution

Uniform prior
θ

Likelihood Posterior

MLE case

Maximum Likelihood Estimate

P(θ |D) =
P(D |θ)P(θ)

P(D)

̂θMLE(D) = argmax
θ

P(D |θ)

• It’s literally the maximum of the likelihood.
• In the case of a Gaussian likelihood, it’s equivalent to the lowest χ2

MLE

Maximum Likelihood Estimation (MLE)
and Maximum A Posteriori (MAP)

Prior

• MLE and MAP are almost the same thing and only
differ by the prior distribution

θ
Posterior

Uniform prior
θ

Likelihood Posterior

MAP case

Maximum Likelihood Estimate

P(θ |D) =
P(D |θ)P(θ)

P(D)

̂θMLE(D) = argmax
θ

P(D |θ)

• It’s literally the maximum of the likelihood.
• In the case of a Gaussian likelihood, it’s equivalent to the lowest χ2

Maximum A Posteriori
̂θMAP(D) = argmax

θ
P(θ |D)

= argmax
θ

P(D |θ)P(θ)

• It’s literally the maximum of the posterior.
• MLE is a special case of MAP

MLE

MAP

MLE case

Multi-layer perceptron (MLP)

Feed forward network

Going back to our MLP

Two excellent papers: Jospin et al. (2022, arXiv: 2007.06823); Goan & Fookes (2020, arXiv: 2006.12024)

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

• After convergence, standard MLP obtains a single
value

• In effect, it converges to the Maximum Likelihood
(MLE) value.

• There is no uncertainty on the output or the individual
values in the network

• Does not capture epistemic uncertainty (uncertainty
due to the model itself)

Going back to our MLP

Two excellent papers: Jospin et al. (2022, arXiv: 2007.06823); Goan & Fookes (2020, arXiv: 2006.12024)

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

2

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

deep learning, which is referred to by Wang and Yeung [11] as
the conjoint use of deep learning for perception and traditional
Bayesian models for inference.1 However, navigating through
this literature is challenging without some prior background
in Bayesian statistics. This brings an additional layer of com-
plexity for deep learning practitioners interested in building
and using BNNs.

This paper, conceived as a tutorial, presents a unified
workflow to design, implement, train and evaluate a BNN
(Figure 2). It also provides an overview of the relevant litera-
ture where a large number of approaches have been developed
to efficiently train and use BNNs. A good knowledge of
those different methods is a prerequisite for an efficient use
of BNNs in big data applications of deep learning. In this
tutorial, we assume that the reader is already familiar with
the concepts of traditional deep learning such as artificial
neural networks, training algorithms, supervision strategies,
and loss functions [13]. This paper focuses on exploring the
correspondences between traditional deep learning approaches
and Bayesian methods (Figure 1). It is intended to motivate
and help researchers and students to use BNNs in measuring
uncertainty for problems in their respective fields of study and
research, helping them relate their existing knowledge in deep
learning to the relevant Bayesian methods.

The remaining parts of this paper are organized as follows.
Section II introduces the concept of a BNN. Section III
presents the motivations for BNNs as well as their appli-
cations. Section IV explains how to design the stochastic
model associated with a BNN. Section V explores the most
important algorithms used for Bayesian inference and how
they were adapted for deep learning. Section VI reviews BNN
simplification methods. Section VII presents the methods used
to evaluate the performance of a BNN. Finally, Section VIII
concludes the paper. The supplementary material contains
a gallery of practical examples illustrating the theoretical
concepts presented in Sections II, IV and V of the main paper.
Each example source code is also available online on GitHub

1Note that some other authors use a different definition of Bayesian deep
learning, which is closer to the idea of a BNN [12]).

to provide implementation examples of the most important
algorithms to work with BNNs.

II. WHAT IS A BAYESIAN NEURAL NETWORK?
A BNN is defined slightly differently across the literature,

but a commonly agreed definition is that a BNN is a stochastic
artificial neural network trained using Bayesian inference.

The goal of artificial neural networks (ANNs) is to rep-
resent an arbitrary function y = �(x). Traditional ANNs
such as feedforward networks and recurrent networks are
built using one input layer l0, a succession of hidden layers
li, i = 1, . . . , n � 1, and one output layer ln. (Here, n + 1
is the total number of layers.) In the simplest architecture
of feedforward networks, each layer l is represented as a
linear transformation, followed by a nonlinear operation s, also
known as an activation function:

l0 = x,

li = si(W ili�1 + bi) 8i 2 [1, n],
y = ln.

(2)

Here, ✓ = (W , b) are the parameters of the network, where
W are the weights of the network connections and b the
biases. A given ANN architecture represents a set of functions
isomorphic to the set of possible parameters ✓. Deep learning
is the process of regressing the parameters ✓ from the training
data D, where D is composed of a series of input x and
their corresponding labels y. The standard approach is to
approximate a minimal cost point estimate of the network
parameters ✓̂, i.e., a single value for each parameter (Fig-
ure 3a), using the backpropagation algorithm, with all other
possible parametrizations of the network discarded. The cost
function is often defined as the log likelihood of the training
set, sometimes with a regularization term included. From a
statistician’s point of view, this is a maximum likelihood esti-
mation (MLE), or a maximum a posteriori (MAP) estimation
when regularization is used.

The point estimate approach, which is the traditional ap-
proach in deep learning, is relatively easy to deploy with
modern algorithms and software packages, but tends to lack
explainability [14]. The final model might also generalize

2

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

deep learning, which is referred to by Wang and Yeung [11] as
the conjoint use of deep learning for perception and traditional
Bayesian models for inference.1 However, navigating through
this literature is challenging without some prior background
in Bayesian statistics. This brings an additional layer of com-
plexity for deep learning practitioners interested in building
and using BNNs.

This paper, conceived as a tutorial, presents a unified
workflow to design, implement, train and evaluate a BNN
(Figure 2). It also provides an overview of the relevant litera-
ture where a large number of approaches have been developed
to efficiently train and use BNNs. A good knowledge of
those different methods is a prerequisite for an efficient use
of BNNs in big data applications of deep learning. In this
tutorial, we assume that the reader is already familiar with
the concepts of traditional deep learning such as artificial
neural networks, training algorithms, supervision strategies,
and loss functions [13]. This paper focuses on exploring the
correspondences between traditional deep learning approaches
and Bayesian methods (Figure 1). It is intended to motivate
and help researchers and students to use BNNs in measuring
uncertainty for problems in their respective fields of study and
research, helping them relate their existing knowledge in deep
learning to the relevant Bayesian methods.

The remaining parts of this paper are organized as follows.
Section II introduces the concept of a BNN. Section III
presents the motivations for BNNs as well as their appli-
cations. Section IV explains how to design the stochastic
model associated with a BNN. Section V explores the most
important algorithms used for Bayesian inference and how
they were adapted for deep learning. Section VI reviews BNN
simplification methods. Section VII presents the methods used
to evaluate the performance of a BNN. Finally, Section VIII
concludes the paper. The supplementary material contains
a gallery of practical examples illustrating the theoretical
concepts presented in Sections II, IV and V of the main paper.
Each example source code is also available online on GitHub

1Note that some other authors use a different definition of Bayesian deep
learning, which is closer to the idea of a BNN [12]).

to provide implementation examples of the most important
algorithms to work with BNNs.

II. WHAT IS A BAYESIAN NEURAL NETWORK?
A BNN is defined slightly differently across the literature,

but a commonly agreed definition is that a BNN is a stochastic
artificial neural network trained using Bayesian inference.

The goal of artificial neural networks (ANNs) is to rep-
resent an arbitrary function y = �(x). Traditional ANNs
such as feedforward networks and recurrent networks are
built using one input layer l0, a succession of hidden layers
li, i = 1, . . . , n � 1, and one output layer ln. (Here, n + 1
is the total number of layers.) In the simplest architecture
of feedforward networks, each layer l is represented as a
linear transformation, followed by a nonlinear operation s, also
known as an activation function:

l0 = x,

li = si(W ili�1 + bi) 8i 2 [1, n],
y = ln.

(2)

Here, ✓ = (W , b) are the parameters of the network, where
W are the weights of the network connections and b the
biases. A given ANN architecture represents a set of functions
isomorphic to the set of possible parameters ✓. Deep learning
is the process of regressing the parameters ✓ from the training
data D, where D is composed of a series of input x and
their corresponding labels y. The standard approach is to
approximate a minimal cost point estimate of the network
parameters ✓̂, i.e., a single value for each parameter (Fig-
ure 3a), using the backpropagation algorithm, with all other
possible parametrizations of the network discarded. The cost
function is often defined as the log likelihood of the training
set, sometimes with a regularization term included. From a
statistician’s point of view, this is a maximum likelihood esti-
mation (MLE), or a maximum a posteriori (MAP) estimation
when regularization is used.

The point estimate approach, which is the traditional ap-
proach in deep learning, is relatively easy to deploy with
modern algorithms and software packages, but tends to lack
explainability [14]. The final model might also generalize

2

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

deep learning, which is referred to by Wang and Yeung [11] as
the conjoint use of deep learning for perception and traditional
Bayesian models for inference.1 However, navigating through
this literature is challenging without some prior background
in Bayesian statistics. This brings an additional layer of com-
plexity for deep learning practitioners interested in building
and using BNNs.

This paper, conceived as a tutorial, presents a unified
workflow to design, implement, train and evaluate a BNN
(Figure 2). It also provides an overview of the relevant litera-
ture where a large number of approaches have been developed
to efficiently train and use BNNs. A good knowledge of
those different methods is a prerequisite for an efficient use
of BNNs in big data applications of deep learning. In this
tutorial, we assume that the reader is already familiar with
the concepts of traditional deep learning such as artificial
neural networks, training algorithms, supervision strategies,
and loss functions [13]. This paper focuses on exploring the
correspondences between traditional deep learning approaches
and Bayesian methods (Figure 1). It is intended to motivate
and help researchers and students to use BNNs in measuring
uncertainty for problems in their respective fields of study and
research, helping them relate their existing knowledge in deep
learning to the relevant Bayesian methods.

The remaining parts of this paper are organized as follows.
Section II introduces the concept of a BNN. Section III
presents the motivations for BNNs as well as their appli-
cations. Section IV explains how to design the stochastic
model associated with a BNN. Section V explores the most
important algorithms used for Bayesian inference and how
they were adapted for deep learning. Section VI reviews BNN
simplification methods. Section VII presents the methods used
to evaluate the performance of a BNN. Finally, Section VIII
concludes the paper. The supplementary material contains
a gallery of practical examples illustrating the theoretical
concepts presented in Sections II, IV and V of the main paper.
Each example source code is also available online on GitHub

1Note that some other authors use a different definition of Bayesian deep
learning, which is closer to the idea of a BNN [12]).

to provide implementation examples of the most important
algorithms to work with BNNs.

II. WHAT IS A BAYESIAN NEURAL NETWORK?
A BNN is defined slightly differently across the literature,

but a commonly agreed definition is that a BNN is a stochastic
artificial neural network trained using Bayesian inference.

The goal of artificial neural networks (ANNs) is to rep-
resent an arbitrary function y = �(x). Traditional ANNs
such as feedforward networks and recurrent networks are
built using one input layer l0, a succession of hidden layers
li, i = 1, . . . , n � 1, and one output layer ln. (Here, n + 1
is the total number of layers.) In the simplest architecture
of feedforward networks, each layer l is represented as a
linear transformation, followed by a nonlinear operation s, also
known as an activation function:

l0 = x,

li = si(W ili�1 + bi) 8i 2 [1, n],
y = ln.

(2)

Here, ✓ = (W , b) are the parameters of the network, where
W are the weights of the network connections and b the
biases. A given ANN architecture represents a set of functions
isomorphic to the set of possible parameters ✓. Deep learning
is the process of regressing the parameters ✓ from the training
data D, where D is composed of a series of input x and
their corresponding labels y. The standard approach is to
approximate a minimal cost point estimate of the network
parameters ✓̂, i.e., a single value for each parameter (Fig-
ure 3a), using the backpropagation algorithm, with all other
possible parametrizations of the network discarded. The cost
function is often defined as the log likelihood of the training
set, sometimes with a regularization term included. From a
statistician’s point of view, this is a maximum likelihood esti-
mation (MLE), or a maximum a posteriori (MAP) estimation
when regularization is used.

The point estimate approach, which is the traditional ap-
proach in deep learning, is relatively easy to deploy with
modern algorithms and software packages, but tends to lack
explainability [14]. The final model might also generalize

l = layer

x = input

y = output

W = weights matrix

b = biases

s = activation function

2

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

deep learning, which is referred to by Wang and Yeung [11] as
the conjoint use of deep learning for perception and traditional
Bayesian models for inference.1 However, navigating through
this literature is challenging without some prior background
in Bayesian statistics. This brings an additional layer of com-
plexity for deep learning practitioners interested in building
and using BNNs.

This paper, conceived as a tutorial, presents a unified
workflow to design, implement, train and evaluate a BNN
(Figure 2). It also provides an overview of the relevant litera-
ture where a large number of approaches have been developed
to efficiently train and use BNNs. A good knowledge of
those different methods is a prerequisite for an efficient use
of BNNs in big data applications of deep learning. In this
tutorial, we assume that the reader is already familiar with
the concepts of traditional deep learning such as artificial
neural networks, training algorithms, supervision strategies,
and loss functions [13]. This paper focuses on exploring the
correspondences between traditional deep learning approaches
and Bayesian methods (Figure 1). It is intended to motivate
and help researchers and students to use BNNs in measuring
uncertainty for problems in their respective fields of study and
research, helping them relate their existing knowledge in deep
learning to the relevant Bayesian methods.

The remaining parts of this paper are organized as follows.
Section II introduces the concept of a BNN. Section III
presents the motivations for BNNs as well as their appli-
cations. Section IV explains how to design the stochastic
model associated with a BNN. Section V explores the most
important algorithms used for Bayesian inference and how
they were adapted for deep learning. Section VI reviews BNN
simplification methods. Section VII presents the methods used
to evaluate the performance of a BNN. Finally, Section VIII
concludes the paper. The supplementary material contains
a gallery of practical examples illustrating the theoretical
concepts presented in Sections II, IV and V of the main paper.
Each example source code is also available online on GitHub

1Note that some other authors use a different definition of Bayesian deep
learning, which is closer to the idea of a BNN [12]).

to provide implementation examples of the most important
algorithms to work with BNNs.

II. WHAT IS A BAYESIAN NEURAL NETWORK?
A BNN is defined slightly differently across the literature,

but a commonly agreed definition is that a BNN is a stochastic
artificial neural network trained using Bayesian inference.

The goal of artificial neural networks (ANNs) is to rep-
resent an arbitrary function y = �(x). Traditional ANNs
such as feedforward networks and recurrent networks are
built using one input layer l0, a succession of hidden layers
li, i = 1, . . . , n � 1, and one output layer ln. (Here, n + 1
is the total number of layers.) In the simplest architecture
of feedforward networks, each layer l is represented as a
linear transformation, followed by a nonlinear operation s, also
known as an activation function:

l0 = x,

li = si(W ili�1 + bi) 8i 2 [1, n],
y = ln.

(2)

Here, ✓ = (W , b) are the parameters of the network, where
W are the weights of the network connections and b the
biases. A given ANN architecture represents a set of functions
isomorphic to the set of possible parameters ✓. Deep learning
is the process of regressing the parameters ✓ from the training
data D, where D is composed of a series of input x and
their corresponding labels y. The standard approach is to
approximate a minimal cost point estimate of the network
parameters ✓̂, i.e., a single value for each parameter (Fig-
ure 3a), using the backpropagation algorithm, with all other
possible parametrizations of the network discarded. The cost
function is often defined as the log likelihood of the training
set, sometimes with a regularization term included. From a
statistician’s point of view, this is a maximum likelihood esti-
mation (MLE), or a maximum a posteriori (MAP) estimation
when regularization is used.

The point estimate approach, which is the traditional ap-
proach in deep learning, is relatively easy to deploy with
modern algorithms and software packages, but tends to lack
explainability [14]. The final model might also generalize

Let’s collect all model parameters in theta:

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

Adding uncertainties to our weights

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

2

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

deep learning, which is referred to by Wang and Yeung [11] as
the conjoint use of deep learning for perception and traditional
Bayesian models for inference.1 However, navigating through
this literature is challenging without some prior background
in Bayesian statistics. This brings an additional layer of com-
plexity for deep learning practitioners interested in building
and using BNNs.

This paper, conceived as a tutorial, presents a unified
workflow to design, implement, train and evaluate a BNN
(Figure 2). It also provides an overview of the relevant litera-
ture where a large number of approaches have been developed
to efficiently train and use BNNs. A good knowledge of
those different methods is a prerequisite for an efficient use
of BNNs in big data applications of deep learning. In this
tutorial, we assume that the reader is already familiar with
the concepts of traditional deep learning such as artificial
neural networks, training algorithms, supervision strategies,
and loss functions [13]. This paper focuses on exploring the
correspondences between traditional deep learning approaches
and Bayesian methods (Figure 1). It is intended to motivate
and help researchers and students to use BNNs in measuring
uncertainty for problems in their respective fields of study and
research, helping them relate their existing knowledge in deep
learning to the relevant Bayesian methods.

The remaining parts of this paper are organized as follows.
Section II introduces the concept of a BNN. Section III
presents the motivations for BNNs as well as their appli-
cations. Section IV explains how to design the stochastic
model associated with a BNN. Section V explores the most
important algorithms used for Bayesian inference and how
they were adapted for deep learning. Section VI reviews BNN
simplification methods. Section VII presents the methods used
to evaluate the performance of a BNN. Finally, Section VIII
concludes the paper. The supplementary material contains
a gallery of practical examples illustrating the theoretical
concepts presented in Sections II, IV and V of the main paper.
Each example source code is also available online on GitHub

1Note that some other authors use a different definition of Bayesian deep
learning, which is closer to the idea of a BNN [12]).

to provide implementation examples of the most important
algorithms to work with BNNs.

II. WHAT IS A BAYESIAN NEURAL NETWORK?
A BNN is defined slightly differently across the literature,

but a commonly agreed definition is that a BNN is a stochastic
artificial neural network trained using Bayesian inference.

The goal of artificial neural networks (ANNs) is to rep-
resent an arbitrary function y = �(x). Traditional ANNs
such as feedforward networks and recurrent networks are
built using one input layer l0, a succession of hidden layers
li, i = 1, . . . , n � 1, and one output layer ln. (Here, n + 1
is the total number of layers.) In the simplest architecture
of feedforward networks, each layer l is represented as a
linear transformation, followed by a nonlinear operation s, also
known as an activation function:

l0 = x,

li = si(W ili�1 + bi) 8i 2 [1, n],
y = ln.

(2)

Here, ✓ = (W , b) are the parameters of the network, where
W are the weights of the network connections and b the
biases. A given ANN architecture represents a set of functions
isomorphic to the set of possible parameters ✓. Deep learning
is the process of regressing the parameters ✓ from the training
data D, where D is composed of a series of input x and
their corresponding labels y. The standard approach is to
approximate a minimal cost point estimate of the network
parameters ✓̂, i.e., a single value for each parameter (Fig-
ure 3a), using the backpropagation algorithm, with all other
possible parametrizations of the network discarded. The cost
function is often defined as the log likelihood of the training
set, sometimes with a regularization term included. From a
statistician’s point of view, this is a maximum likelihood esti-
mation (MLE), or a maximum a posteriori (MAP) estimation
when regularization is used.

The point estimate approach, which is the traditional ap-
proach in deep learning, is relatively easy to deploy with
modern algorithms and software packages, but tends to lack
explainability [14]. The final model might also generalize

 Φ = our approximate model
 ϵ = random noise

 Dx = training input data
 Dy = training output data

•By setting the weights to be distributions, we make the model probabilistic

•We can now compute the posterior of the parameters over the training data Dθ

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

Jospin et al. (2022, arXiv: 2007.06823

Adding uncertainties to our weights

•Given we can compute the probability of y given x assuming D:

p(θ |D)
p(y |x, D)

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

The integral is very hard to calculate. It is usually sampled or
approximated using Variational Inference (e.g. Normalising Flows)

p(y |x, θ)

Jospin et al. (2022, arXiv: 2007.06823

We will discuss Variational Inference if we have time…

3

(a) (b) (c)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

in unforeseen and overconfident ways on out-of-training-
distribution data points [15, 16]. This property, in addition to
the inability of ANNs to say “I don’t know”, is problematic
for many critical applications. Of all the techniques that exist
to mitigate this [17], stochastic neural networks have proven
to be one of the most generic and flexible.

Stochastic neural networks are a type of ANN built by
introducing stochastic components into the network. This is
performed by giving the network either a stochastic activation
(Figure 3b) or stochastic weights (Figure 3c) to simulate
multiple possible models ✓ with their associated probability
distribution p(✓). Thus, BNNs can be considered a special
case of ensemble learning [18].

The main motivation behind ensemble learning comes from
the observation that aggregating the predictions of a large
set of average-performing but independent predictors can lead
to better predictions than a single well-performing expert
predictor [19, 20]. Stochastic neural networks might improve
their performance over their point estimate counterparts in a
similar fashion, but this is not their main aim. Rather, the
main goal of using a stochastic neural network architecture
is to obtain a better idea of the uncertainty associated with
the underlying processes. This is accomplished by comparing
the predictions of multiple sampled model parametrizations ✓.
If the different models agree, then the uncertainty is low. If
they disagree, then the uncertainty is high. This process can
be summarized as follows:

✓ ⇠ p(✓),
y = �✓(x) + ✏,

(3)

where ✏ represents random noise to account for the fact that
the function � is only an approximation. A BNN can then
be defined as any stochastic artificial neural network trained
using Bayesian inference [21].

To design a BNN, the first step is the choice of a deep
neural network architecture, i.e., a functional model. Then,
one has to choose a stochastic model, i.e., a prior distribution
over the possible model parametrization p(✓) and a prior
confidence in the predictive power of the model p(y|x,✓)
(Figure 2a). The model parametrization can be considered to
be the hypothesis H and the training set is the data D. The
choice of a BNN’s stochastic model is somehow equivalent to
the choice of a loss function when training a point estimate
neural network; see Section IV-C3. In the rest of this paper,
we will denote the model parameters by ✓, the training set

by D, the training inputs by Dx, and the training labels by
Dy . By applying Bayes’ theorem, and enforcing independence
between the model parameters and the input, the Bayesian
posterior can be written as:

p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓
p(Dy|Dx,✓

0)p(✓0)d✓0 / p(Dy|Dx,✓)p(✓). (4)

The Bayesian posterior for complex models such as artifi-
cial neural networks is a high dimensional and highly non-
convex probability distribution [22]. This complexity makes
computing and sampling it using standard methods an in-
tractable problem, especially because computing the evidenceR
✓ p(Dy|Dx,✓

0)p(✓0)d✓0 is difficult. To address this problem,
two broad approaches have been introduced: (1) Markov chain
Monte Carlo and (2) variational inference. These are presented
in more details in Section V.

When using a BNN for prediction, the probability distribu-
tion p(y|x, D) [12], called the marginal and which quantifies
the model’s uncertainty on its prediction, is of particular
interest. Given p(✓|D), p(y|x, D) can be computed as:

p(y|x, D) =

Z

✓
p(y|x,✓0)p(✓0

|D)d✓0
. (5)

In practice, p(y|x, D) is sampled indirectly using Equation
(3). The final prediction can be summarized by statistics
computed using a Monte Carlo approach (Figure 2c). A large
set of weights ✓i is sampled from the posterior and used
to compute a series of possible outputs y

i
, as shown in

Algorithm 1, which corresponds to samples from the marginal.

Algorithm 1 Inference procedure for a BNN.

Define p(✓|D) =
p(Dy|Dx,✓)p(✓)R

✓ p(Dy|Dx,✓
0)p(✓0)d✓0 ;

for i = 0 to N do
Draw ✓i ⇠ p(✓|D);
y
i
= �✓i(x);

end for
return Y = {y

i
|i 2 [0, N)}, ⇥ = {✓i|i 2 [0, N)};

In Algorithm 1, Y is a set of samples from p(y|x, D) and
⇥ a collection of samples from p(✓|D). Usually, aggregates
are computed on those samples to summarize the uncertainty
of the BNN and obtain an estimator for the output y. This
estimator is denoted by ŷ.

When performing regression, the procedure that is usually
used to summarize the predictions of a BNN is model aver-
aging [23]:

ŷ =
1

|⇥|

X

✓i2⇥

�✓i(x). (6)

This approach is so common in ensemble learning that it
is sometimes called ensembling. To quantify uncertainty, the
covariance matrix can be computed as follows:

⌃y|x,D =
1

|⇥|�1

X

✓i2⇥

(�✓i(x)� ŷ) (�✓i(x)� ŷ)| . (7)

What’s happening in practice

• Replace your standard feed forward layers with probabilistic layers

• The easiest way is to use PyRo or torchnbnn that implements this for you

• We can now compute the posterior of the parameters over the training data

• We don’t actually need ALL layers to be probabilistic but only the last layer
needs to be

θ

Google Colab notebook:

https://bit.ly/ExoAI_BNN

proportion of the remaining training data that is split at the
current node.

To produce the posterior plots, as shown in Figure 2(a), each
prediction from a tree corresponds to a sample from an
empirical distribution. The 1000 samples therefore correspond
to the density estimation of the atmospheric parameters.

3.2. Bayesian Neural Networks

Our model is built from BNNs, which inherit their structure
from neural networks. Although we provide details of both
techniques in the following section, we highlight their strong
relationship with multivariate linear regression, where the
objective is to learn a matrix of weights W that map an input s
to an output q. Fully connected deep neural networks extend
upon this by combining layers of linear regression with
nonlinear functions to result in a more powerful function-
approximating capability, despite still operating on the same
supervised learning task as a linear regression model.

3.2.1. A Summary

BNNs offer the powerful function-approximating capability
of deep neural networks with the additional advantage of being
able to provide distributions over their outputs (MacKay 1992;
Neal 1995). Therefore, these characteristics are well-suited to
the task of atmospheric retrieval. To enable BNNs to scale to
large architectures we employ the Monte Carlo dropout
approximation to BNNs (Gal & Ghahramani 2016). This is a
stochastic variational inference approach (Hoffman et al. 2013)
that allows BNN inference to be performed for both large
architectures and large data sets. The alternative approach
would be to implement a form of MCMC such as Hamiltonian
Monte Carlo (HMC, Neal 1995) to perform inference.
Although HMC has been shown to be successful at small
scales, it currently cannot be scaled in the same way as
stochastic variational inference approaches.

Deep neural networks consist of a hierarchy of layers, where
each layer applies a nonlinear weighted transformation of its
input. We define each layer l to have its own matrix of weights
Wl and biases bl. If h(·) is a nonlinear function, then we can
define a fully connected dense neural network with L layers and
input s as:

() (())= + +wf s W h h W s b b... ... ,L l L0

where { }w = =W b,l l l
L

1 and refers to all the network weights. A
BNN takes this formulation and adds a prior ()wp over the
weights, often taking the form of a multivariate normal
distribution. Bayesian inference in BNNs requires computing
an intractable integral to infer (∣)w �p tr . The Monte Carlo
dropout approximation provides a (variational) approximation
to this distribution and comes under the wider area of
variational inference (Jordan et al. 1998). Practical implemen-
tation of MC dropout requires drawing dropout masks
(Srivastava et al. 2014) from Bernoulli-distributed random
variables to set a certain proportion of weights to zero.
Applying this during the training of the network acts as a
regularizer to prevent overfitting. Dropping these weights while
making predictions at test-time results in the test-time
approximation for predictions over the outputs. For a given
input sn, we can sample the network T times to result in an
empirical distribution (∣)q �sp ,n tr .

Determining the proportion of weights to be dropped in each
layer pl often requires tuning over a validation set. However,
we use concrete dropout layers to automatically optimize for
these values in the training process (Gal et al. 2017).

3.2.2. The Model

Our model, plan-net, shown in Figure 1, is a deep neural
network with four dense concrete dropout layers (Gal et al.
2017). The model is implemented in Keras (Chollet et al.
2015) with a TensorFlow backend (Abadi et al. 2016). Each
layer consists of 1024 units, and we use a batch size of 512. For
training the model, we use the Adam optimization algorithm
(Kingma & Ba 2014). For deciding on the architecture, we
implemented a grid search over the number of layers and the
number of units per layer.
Our task is to accurately predict the atmospheric parameters

and provide posterior13 distributions over their values. These
parameters are expected to covary and we directly use this
domain knowledge to design our model, such that we can
represent the atmospheric parameters to be jointly distributed
by a multivariate normal distribution. Therefore, we design the
output of the BNN to consist of a lower triangular matrix L of
dimensions D×D and a mean vector m of dimension D. We
can then represent the precision matrix of a multivariate normal
via its Cholesky decomposition L = FLL .
Figure 1 demonstrates the atmospheric retrieval process after

the model is trained. We implement T forward passes through
the network for a given observed spectrum sn, resulting in the
samples { () () }m =s L s,n t n t t

T
1. In the next step, we take the mean

Figure 1. plan-net model procedure at test time for a given spectrum Sn. T
samples are taken from the BNN and the expectations over the lower triangular
matrix and the mean are then used to parameterize the multivariate normal
distribution. q can then be drawn from this distribution to retrieve the
atmospheric parameters. Each concrete dropout layer consists of 1024 units.

13 In the ML literature, the output distribution would normally be called the
predictive distribution as we are inferring the posterior over the weights of the
network and then working with this posterior to infer a predictive distribution.
However, to remain consistent with the exoplanet literature, we avoid that here.

3

The Astronomical Journal, 158:33 (8pp), 2019 July Cobb et al.

Plan-net: Cobb et al. (2019)

Ensemble Bayesian Networks

• Provides an estimate of network uncertainty (epistemic noise)

• Running many networks in an ensemble (average results) will
create a stronger predictor

Do we have more time?

/imagine prompt: a surrealist painting showing the flow of time with astronomers

Variational Inference

Bei et al. 2018, Ganguly & Earp 2021

• If is intractable, don’t sample from it, replace it with an approximationP(θ |D)

P(θ |D) =
P(D |θ)P(θ)

P(D)
P(D) = ∫ P(D |θ)P(θ)dθ

Posterior
θ

• Instead of sampling an intractable posterior, we can replace it with
an approximate distribution

• The idea is to minimise the statistical difference between and
 -> This becomes a fitting, not a sampling problem!

• can be any function but often is a multivariate Gaussian

Q(θ)
Q(x)

P(θ |D)
Q(x)

Q(θ)

P(θ |D)

Reminder: Kullback-Leibler Divergence

Berger et al (2009), Kullback & Leibler (1951), John & Draper (1975)

DKL(P ||Q) =

Z
P (y)log

✓
P (y)

Q(y)

◆
dy

= �
Z

P (y)logQ(y)dy +

Z
P (y)logP (y)dy

= HP,Q(y)�HP (y)

P (y) Q(y)

DKL(P ||Q)

•Claude Shannon derived information entropy in 1948

•Derived by Salomon Kullback and Richard Leiber in 1951

•KLD is the most fundamental measure of information theory

•KLD was devised to measure the expected extra information needed if you want to model the right
distribution, P, but you assume the wrong distribution Q.

•It measures the ‘distance’ between two probability distributions

• Note that !!DKL(P | |Q) ≠ DKL(Q | |P)

Variational Inference

Berger et al (2009), Kullback & Leibler (1951), John & Draper (1975)

• VI poses the following minimisation:
P(θ |D) =

P(D |θ)P(θ)
P(D)

P(D) = ∫ P(D |θ)P(θ)dθ

Posterior
θ

Q(θ)

P(θ |D)

P(θ, D) = P(θ |D)P(θ)

DKL(Q(θ) ∥ P(θ |D)) = 𝔼Q [log Q(θ)
P(D |θ)]

= 𝔼Q [log Q(θ)] − 𝔼Q [log P(θ |D)]

= 𝔼Q [log Q(θ)] − 𝔼Q [log P(θ, D)] + P(D)

= − (𝔼Q [log P(θ, D)] − 𝔼Q [log Q(θ)]) + P(D)

ELBO

Q*(θ) = argmin
Q(θ)∈𝒬

DKL(Q(θ) | |P(θ |D))

• VI poses the following minimisation:

Hard to compute,
Easy to ignore…

Variational Inference

Blei et al. 2018

• If you continue the maths you get

Posterior
θ

Q(θ)

P(θ |D)

DKL(Q(θ) ∥ P(θ |D)) = 𝔼Q [log Q(θ)
P(D |θ)]

= − (𝔼Q [log P(θ, D)] − 𝔼Q [log Q(θ)]) + P(D)

ELBO

ELBO(Q) = 𝔼[logP(θ)] + 𝔼[logP(D |θ)] − 𝔼[logQ(θ)]

= 𝔼[logP(D |θ)] − DKL(Q(θ) | |P(θ))

Expectation of your likelihood

P(θ |D) =
P(D |θ)P(θ)

P(D)
P(θ, D) = P(θ |D)P(θ)

Distance of from Prior Q(θ) P(θ)

Variational Inference in Variational Autoencoders

Blei et al. 2018

• How do we calculate this? Using ML
• Variational Autoencoders (VAE) use VI very successfully

ELBO(Q) = 𝔼[logP(θ)] + 𝔼[logP(D |θ)] − 𝔼[logQ(θ)]

= 𝔼[logP(D |θ)] − DKL(Q(θ) | |P(θ))

Probabilist encoder Pϕ(θ |D) Probabilistic decoder Pϕ(D̂ |θ)

D

μ

σ

ϵ D̂θ

 drawn from a
Gaussian distribution

θ

• Training the VAE learns an approx.
of the posterior

• are the parameters of the VAE
Pϕ(θ |D)

ϕ

Normalising flows. Making VI non-Gaussian

•Normalising flows extend the central Gaussian assumption to arbitrary complex distributions
•The do this by repeatedly learning consecutive linear transformations of θ

Probabilist encoder Pϕ(θ |D)

D

μ

σ

ϵ D̂θ

 drawn from a
Gaussian distribution

θ

Normalising flows. Making VI non-Gaussian

Probabilist encoder Pϕ(θ |D)

D

μ

σ

ϵ θ

 drawn from a
Gaussian distribution

θ
Linear transforms of

until has become

non-linear

θ

∏
N

ζN

D̂ζ1(θ)

ζ 2
(ζ

1(
θ)

)

ζ N
(ζ

N
−

1(
θ)

)

•Normalising flows extend the central Gaussian assumption to arbitrary complex distributions
•The do this by repeatedly learning consecutive linear transformations of θ

Rezende & Mohamad (2015)

Normalising flows learning Atmospheric retrievals

μ

σ

ϵ θ ζ1(θ)

ζ 2
(ζ

1(
θ)

)

ζ N
(ζ

N
−

1(
θ)

)

•Normalising flows extend the central Gaussian assumption to arbitrary complex distributions
•The do this by repeatedly learning consecutive linear transformations of θ

Yip et al (2022)

di
ff-

Ta
u

(d

iff
er

en
tia

bl
e

Ta
uR

Ex
 3

)

Sample from arbitrary complex
Distribution -> p(θ |D)

Sp
ec

tr
um

Pl
an

et
 p

ar
am

et
er

s

9

Figure 4. Posterior distribution of HD209458 b in Ariel Tier2 resolution obtained via NS-retrieval (red) and VI-retrieval
(yellow). The top right corner is an empirical comparison between the two best fitted spectra as obtained by the two methods.
The shaded area shows the 1-� uncertainty of the respective retrieved methods

et al. 2022; Ardevol Martinez et al. 2022). The method
presented here presents an alternative approach to train
deep learning model. Instead of generating a big data set
for model training, our network is specific (or in other
words, overfitted) to the observed data, and similar to
Markovian sampling algorithms, it is not generalisable
and must be re-run for any changes in observed data
and/or model assumptions. However, using an optimi-
sation algorithm (i.e. VI) over a sampling one drastically
reduces the number of forward model computations re-
quired and results in significant run-time savings when
forward models are computationally expensive. Table
6.1 shows a comparison of the number of forward model
calls between NS- and VI-retrieval on the same at-
mospheric model (as Case I) in two di↵erent spectral

resolutions. By dropping the goal of training a general-
isable model, we forego the need to create vast training
sets and expensive pre-training of our model. It further-
more a↵ords us with the flexibility of easily changing our
input data and forward models. This flexibility has al-
lowed us to explore the performance of our model at
di↵erent spectral resolutions, wavelength ranges, obser-
vational uncertainties and model assumptions with rel-
ative ease (as demonstrated above). On the other hand,
generalisable models must be re-trained for any changes
in observed data and/or model assumptions.
The second major limitation of ML and in particular

deep models is their inherently un-interpretable archi-
tecture. For instance, conventional Variational Autoen-
coders (made up of neural network based encoder and

Variation Inference
vs Sampling results

• Equivalent posteriors to traditional retrievals

• 75% fewer forward models required

• Full formal treatment of observational errors

• Full ability to do Bayesian model selection

10 Yip et al.

decoder, Kingma & Welling 2013), do not produce nat-
urally interpretable latent variables. Our implementa-
tion, on the other hand, naturally produce interpretable
latent variables by using a physical, deterministic for-
ward model as our “decoder”. Here we constrain the
neural network to produce physically viable solutions,
in other words, the network is constrained explicitly by
the physics. This is demonstrated through our examples,
the surrogate distributions are able to provide physically
plausible correlations and are aligned with correlations
produced from standard Bayesian Sampling retrievals
(NS-retrieval, red contour).

6.2. Objective Function

The objective (loss) function is a crucial factor that
governs the learning behaviour of a deep learning model.
Deep learning models in the literature are usually
trained to best-match the respective ground truth val-
ues of the physical parameters (parameter values used to
generate the forward model). Here we opt to align our
objective to that of our retrieval counterpart, in other
words, we are explicitly asking our model to look for
solutions that can best explain our observation.
In an ideal world, both approaches will agree with

each other. However, it is not the case for inverse prob-
lems, where our observation is inherently corrupted2 and
we may never be able to recover the ground truth in
some cases due to the loss of information and the inverse
processing being ill-defined. The conventional approach
will therefore be asking the neural network to pursue
ground truth(s) that may no longer be possible to re-
trieve, which will cause the neural network to exhibit
fictitious behaviour if it results in the lowering of the
loss function values (Yip et al. 2020). Our proposed ob-
jective, on the other hand, naturally takes into account
these observational uncertainties and is inherently con-
strained by our deterministic physical model.
In terms of model development, our framework by-

passes the need to train the network with a large library
of synthetic spectra before applying to actual data, as we
are training the network directly on actual observations.
This move avoids the problem of data shift (Quionero-
Candela et al. 2009) - where our training distribution is
di↵erent from our test distribution.
Our approach proposed in this paper grants us better

interpretability of the results, compared to other ma-
chine learning retrival architectures, due to the inclusion
of the physical forward model Diff-⌧ . However it does
of course not guard from the intrinsic retrieval biases

2
possible sources include limitations from instruments or other

astrophysical noises

Model ELBO Ref log10(B)

Flat line 62.74 62.83 315.66

No Methane 345.37 347.18 33.03

Complete 378.40 380.20 N/A

Overspecified Model 374.00 377.74 4.4

Table 3. Retrieved ELBO from VI-retrieval and Bayesian
(log-) Evidence from NS-retrieval (Ref) for each scenario.
log10(B) shows the log-di↵erence between the ELBO of our
complete model and other competing models.

induced by the atmospheric forward itself (Rocchetto
et al. 2016; Feng et al. 2020; MacDonald et al. 2020).
These biases can only be alleviated through increasing
the complexity of the atmospheric forward model to bet-
ter represent the physical/chemical processes leading to
the observed spectra.

6.2.1. Model Selection

Model selection is a key part of model evaluation cy-
cle. So far, the machine learning retrieval literature
has largely omitted the issue by training networks un-
der one or several fixed atmospheric assumptions. Our
flexible framework and similar objective function to
NS-retrieval means that we can, for the first time,
utilise some of the tools frequently used by sampling-
based retrievals to compare the retrieval results from
di↵erent models.
Given that our surrogate distribution is a good ap-

proximation of the underlying posterior distribution, our
ELBO, despite being a lower bound, should closely ap-
proximate the Bayesian evidence. We can therefore use
the ELBO as a proxy of the evidence, and compare our
models by estimating the Bayes’ factor.

B10 =
P (x|M1)P (M1)

P (x|M0)P (M0)
(12)

where P(x|Mk) represents the Bayesian Evidence at-
tained from model Mk, P (Mk) represents our prior be-
lief on a particular model.
As an empirical example, we took our exam-

ple from Case II and performed VI-retrieval and
NS-retrieval with di↵erent atmospheric assumptions,
including a flat line model, an incomplete model
(without methane), a complete model (as specified
in Case II) and an overspecified model (Case II +
TiO and VO). Table 6.2.1 compares the corresponding
ELBO from VI-retrieval and Bayesian Evidence from
NS-retrieval. The ELBO retrieved from each model
closely follows, but always smaller than, the correspond-
ing Bayesian Evidence, as set out from the definition of
ELBO. The Bayes’ factor displayed in Table 6.2.1 al-

Yip et al. (2022)

Variational Inference in Variational Autoencoders

• VAEs are not the only way to do VI but its the most focused on at the moment

• Most distributions used to approximate are multivariate Gaussians but more
complex distributions can be implemented or iteratively learned

• Normalising Flows allow the transformation from Gaussians to arbitrary complex
distributions by iteratively applying linear transformations to the Gaussian dists.

• Good blogpost on NFs: https://towardsdatascience.com/introduction-to-normalizing-
flows-d002af262a4b

P(θ |D)

Kobyzev et al. 2019

https://towardsdatascience.com/introduction-to-normalizing-flows-d002af262a4b
https://towardsdatascience.com/introduction-to-normalizing-flows-d002af262a4b

/imagine prompt: An impression of
the pitfalls and dangers of using AI

The need for
explainability

It’s not only about publishing a paper…

AI model

ExplainableAI
Can we interpret

AI predictions?

Data drift +
Domain shift
Does AI model

still apply to

Current data?

Observed
Data

Training
Data

Result

Physics model

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115
Fig. 12. Trade-off between model inter-
pretability and performance, and a represen-
tation of the area of improvement where the
potential of XAI techniques and tools resides.

As perfectly stated in [347] , it is not necessarily true that models
that are more complex are inherently more accurate. This statement is
false in cases in which the data is well structured and features at our
disposal are of great quality and value. This case is somewhat common
in some industry environments, since features being analyzed are con-
strained within very controlled physical problems, in which all of the
features are highly correlated, and not much of the possible landscape
of values can be explored in the data [348] . What can be hold as true, is
that more complex models enjoy much more flexibility than their sim-
pler counterparts, allowing for more complex functions to be approxi-
mated. Now, returning to the statement “models that are more complex are
more accurate ”, given the premise that the function to be approximated
entails certain complexity, that the data available for study is greatly
widespread among the world of suitable values for each variable and
that there is enough data to harness a complex model, the statement
presents itself as a true statement. It is in this situation that the trade-
off between performance and interpretability can be observed. It should
be noted that the attempt at solving problems that do not respect the
aforementioned premises will fall on the trap of attempting to solve a
problem that does not provide enough data diversity (variance). Hence,
the added complexity of the model will only fight against the task of
accurately solving the problem.

In this path toward performance, when the performance comes hand
in hand with complexity, interpretability encounters itself on a down-
wards slope that until now appeared unavoidable. However, the appari-
tion of more sophisticated methods for explainability could invert or
at least cancel that slope. Fig. 12 shows a tentative representation in-
spired by previous works [7] , in which XAI shows its power to improve
the common trade-off between model interpretability and performance.
Another aspect worth mentioning at this point due to its close link to
model interpretability and performance is the approximation dilemma :
explanations made for a ML model must be made drastic and approxi-
mate enough to match the requirements of the audience for which they
are sought, ensuring that explanations are representative of the studied
model and do not oversimplify its essential features.
5.2. On the concept and metrics

The literature clearly asks for an unified concept of explainability. In
order for the field to thrive, it is imperative to place a common ground
upon which the community is enabled to contribute new techniques
and methods. A common concept must convey the needs expressed in
the field. It should propose a common structure for every XAI system.
This paper attempted a new proposition of a concept of explainability

that is built upon that from Gunning [7] . In that proposition and the
following strokes to complete it (Section 2.2), explainability is defined
as the ability a model has to make its functioning clearer to an audience.
To address it, post-hoc type methods exist. The concept portrayed in
this survey might not be complete but as it stands, allows for a first
common ground and reference point to sustain a profitable discussion in
this matter. It is paramount that the field of XAI reaches an agreement in
this respect combining the shattered efforts of a widespread field behind
the same banner.

Another key feature needed to relate a certain model to this con-
crete concept is the existence of a metric. A metric, or group of them
should allow for a meaningful comparison of how well a model fits the
definition of explainable. Without such tool, any claim in this respect
dilutes among the literature, not providing a solid ground on which to
stand. These metrics, as the classic ones (accuracy, F1, sensitivity...),
should express how well the model performs in a certain aspect of ex-
plainability. Some attempts have been done recently around the mea-
surement of XAI, as reviewed thoroughly in [349,350] . In general, XAI
measurements should evaluate the goodness, usefulness and satisfaction
of explanations, the improvement of the mental model of the audience
induced by model explanations, and the impact of explanations on the
performance of the model and on the trust and reliance of the audience.
Measurement techniques surveyed in [349] and [350] (e.g., goodness
checklist, explanation satisfaction scale, elicitation methods for men-
tal models, computational measures for explainer fidelity, explanation
trustworthiness and model reliability) seem to be a good push in the di-
rection of evaluating XAI techniques. Unfortunately, conclusions drawn
from these overviews are aligned with our prospects on the field: more
quantifiable, general XAI metrics are really needed to support the exist-
ing measurement procedures and tools proposed by the community.

This survey does not tackle the problem of designing such a suite of
metrics, since such a task should be approached by the community as a
whole prior acceptance of the broader concept of explainability, which
on the other hand, is one of the aims of the current work. Nevertheless,
we advocate for further efforts towards new proposals to evaluate the
performance of XAI techniques, as well as comparison methodologies
among XAI approaches that allow contrasting them quantitatively under
different application context, models and purposes.
5.3. Challenges to achieve explainable deep learning

While many efforts are currently being made in the area of XAI, there
are still many challenges to be faced before being able to obtain explain-
ability in DL models. First, as explained in Section 2.2 , there is a lack of

100

Barredo Arrieta et al. 2021

Power vs Explainability

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115
Fig. 12. Trade-off between model inter-
pretability and performance, and a represen-
tation of the area of improvement where the
potential of XAI techniques and tools resides.

As perfectly stated in [347] , it is not necessarily true that models
that are more complex are inherently more accurate. This statement is
false in cases in which the data is well structured and features at our
disposal are of great quality and value. This case is somewhat common
in some industry environments, since features being analyzed are con-
strained within very controlled physical problems, in which all of the
features are highly correlated, and not much of the possible landscape
of values can be explored in the data [348] . What can be hold as true, is
that more complex models enjoy much more flexibility than their sim-
pler counterparts, allowing for more complex functions to be approxi-
mated. Now, returning to the statement “models that are more complex are
more accurate ”, given the premise that the function to be approximated
entails certain complexity, that the data available for study is greatly
widespread among the world of suitable values for each variable and
that there is enough data to harness a complex model, the statement
presents itself as a true statement. It is in this situation that the trade-
off between performance and interpretability can be observed. It should
be noted that the attempt at solving problems that do not respect the
aforementioned premises will fall on the trap of attempting to solve a
problem that does not provide enough data diversity (variance). Hence,
the added complexity of the model will only fight against the task of
accurately solving the problem.

In this path toward performance, when the performance comes hand
in hand with complexity, interpretability encounters itself on a down-
wards slope that until now appeared unavoidable. However, the appari-
tion of more sophisticated methods for explainability could invert or
at least cancel that slope. Fig. 12 shows a tentative representation in-
spired by previous works [7] , in which XAI shows its power to improve
the common trade-off between model interpretability and performance.
Another aspect worth mentioning at this point due to its close link to
model interpretability and performance is the approximation dilemma :
explanations made for a ML model must be made drastic and approxi-
mate enough to match the requirements of the audience for which they
are sought, ensuring that explanations are representative of the studied
model and do not oversimplify its essential features.
5.2. On the concept and metrics

The literature clearly asks for an unified concept of explainability. In
order for the field to thrive, it is imperative to place a common ground
upon which the community is enabled to contribute new techniques
and methods. A common concept must convey the needs expressed in
the field. It should propose a common structure for every XAI system.
This paper attempted a new proposition of a concept of explainability

that is built upon that from Gunning [7] . In that proposition and the
following strokes to complete it (Section 2.2), explainability is defined
as the ability a model has to make its functioning clearer to an audience.
To address it, post-hoc type methods exist. The concept portrayed in
this survey might not be complete but as it stands, allows for a first
common ground and reference point to sustain a profitable discussion in
this matter. It is paramount that the field of XAI reaches an agreement in
this respect combining the shattered efforts of a widespread field behind
the same banner.

Another key feature needed to relate a certain model to this con-
crete concept is the existence of a metric. A metric, or group of them
should allow for a meaningful comparison of how well a model fits the
definition of explainable. Without such tool, any claim in this respect
dilutes among the literature, not providing a solid ground on which to
stand. These metrics, as the classic ones (accuracy, F1, sensitivity...),
should express how well the model performs in a certain aspect of ex-
plainability. Some attempts have been done recently around the mea-
surement of XAI, as reviewed thoroughly in [349,350] . In general, XAI
measurements should evaluate the goodness, usefulness and satisfaction
of explanations, the improvement of the mental model of the audience
induced by model explanations, and the impact of explanations on the
performance of the model and on the trust and reliance of the audience.
Measurement techniques surveyed in [349] and [350] (e.g., goodness
checklist, explanation satisfaction scale, elicitation methods for men-
tal models, computational measures for explainer fidelity, explanation
trustworthiness and model reliability) seem to be a good push in the di-
rection of evaluating XAI techniques. Unfortunately, conclusions drawn
from these overviews are aligned with our prospects on the field: more
quantifiable, general XAI metrics are really needed to support the exist-
ing measurement procedures and tools proposed by the community.

This survey does not tackle the problem of designing such a suite of
metrics, since such a task should be approached by the community as a
whole prior acceptance of the broader concept of explainability, which
on the other hand, is one of the aims of the current work. Nevertheless,
we advocate for further efforts towards new proposals to evaluate the
performance of XAI techniques, as well as comparison methodologies
among XAI approaches that allow contrasting them quantitatively under
different application context, models and purposes.
5.3. Challenges to achieve explainable deep learning

While many efforts are currently being made in the area of XAI, there
are still many challenges to be faced before being able to obtain explain-
ability in DL models. First, as explained in Section 2.2 , there is a lack of

100

•Conceptually, the more complex the model the harder to explain

•Similarly, the more complex the model, the more expressive

•Researcher needs to weigh up interpretability vs accuracy

Concept and Data drift

• Is your model trained on simulations?
Are those representative of the data?

• Is your observation/instrument
changing?

• Is your data changing in imperceptible
ways?

• Is the science question changing?

4 IEEE TRANSACTIONS ON XXXX, VOL. X, NO. X, MM YYYY

Dimension 1 — Passive vs. Active Approaches

Passive
Active

Post hoc explain trained neural networks

Actively change the network architecture or training process for better interpretability

Dimension 2 — Type of Explanations (in the order of increasing explanatory power)

To explain a prediction/class by
Examples
Attribution
Hidden semantics
Rules

Provide example(s) which may be considered similar or as prototype(s)

Assign credit (or blame) to the input features (e.g. feature importance, saliency masks)

Make sense of certain hidden neurons/layers

Extract logic rules (e.g. decision trees, rule sets and other rule formats)

Dimension 3 — Local vs. Global Interpretability (in terms of the input space)

Local
Semi-local
Global

Explain network’s predictions on individual samples (e.g. a saliency mask for an input image)

In between, for example, explain a group of similar inputs together

Explain the network as a whole (e.g. a set of rules/a decision tree)

Fig. 1. The 3 dimensions of our taxonomy.

extra network structures or modifying the training process.
These modifications encourage the network to become more
interpretable (e.g., more like a decision tree). Most commonly
such active interventions come in the form of regularization
terms.

In contrast to previous surveys, the other two dimensions
allow ordinal values. For example, the previously proposed
dimension type of explanator [49] produces subcategories like
decision trees, decision rules, feature importance, sensitivity
analysis etc. However, there is no clear connection among
these pre-recognised explanators (what is the relation between
decision trees and feature importance). Instead, our second
dimension is type/format of explanation. By inspecting various
kinds of explanations produced by different approaches, we can
observe differences in how explicit they are. Logic rules provide
the most clear and explicit explanations while other kinds of
explanations may be implicit. For example, a saliency map
itself is just a mask on top of a certain input. By looking
at the saliency map, people construct an explanation “the
model made this prediction because it focused on this highly
influential part and that part (of the input)”. Hopefully, these
parts correspond to some domain understandable concepts.
Strictly speaking, implicit explanations by themselves are not
complete explanations and need further human interpretation,
which is usually automatically done when people see them. We
recognize four major types of explanations here, logic rules,
hidden semantics, attribution and explanations by examples,
listed in order of decreasing explanatory power. Similar
discussions can be found in the previous literature, e.g.,
Samek et al. [61] provide a short subsection about “type of
explanations” (including explaining learned representations,
explaining individual predictions etc.). However, it is mixed
up with another independent dimension of the interpretability
research which we will introduce in the following paragraph.
A recent survey [62] follows the same philosophy and treats

saliency maps and concept attribution [63] as different types of
explanations, while we view them as being of the same kind,
but differing in the dimension below.

The last dimension, from local to global interpretability
(w.r.t. the input space), has become very common in recent
papers (e.g., [18], [49], [58], [64]), where global interpretability
means being able to understand the overall decision logic of a
model and local interpretability focuses on the explanations of
individual predictions. However, in our proposed dimension,
there exists a transition rather than a hard division between
global and local interpretability (i.e. semi-local interpretability).
Local explanations usually make use of the information at the
target input (e.g., its feature values, its gradient). But global
explanations try to generalize to as wide ranges of inputs as
possible (e.g., sequential covering in rule learning, marginal
contribution for feature importance ranking). This view is also
supported by the existence of several semi-local explanation
methods [65], [66]. There have also been attempts to fuse local
explanations into global ones in a bottom-up fashion [19], [67],
[68].

To help understand the latter two dimensions, Table II
lists examples of typical explanations produced by different
subcategories under our taxonomy. (Row 1) When considering
rule as explanation for local interpretability, an example is to
provide rule explanations which only apply to a given input
x(i) (and its associated output ŷ(i)). One of the solutions is to
find out (by perturbing the input features and seeing how the
output changes) the minimal set of features xk. . .xl whose
presence supports the prediction ŷ

(i). Analogously, features
xm. . .xn can be found which should not be present (larger
values), otherwise ŷ

(i) will change. Then an explanation rule
for x(i) can be constructed as “it is because xk. . .xl are
present and xm. . .xn are absent that x(i) is classified as
ŷ
(i)” [69]. If a rule is valid not only for the input x(i), but

also for its “neighbourhood” [65], we obtain a semi-local

Passive vs Active, Local vs Global Explanations

Zhang et al. 2021

Hierarchy of Explainability

A. Barredo Arrieta, N. Díaz-Rodríguez and J. Del Ser et al. Information Fusion 58 (2020) 82–115

Fig. 4. Conceptual diagram showing the different
post-hoc explainability approaches available for a
ML model M ! .

Fig. 5. Graphical illustration of the levels of transparency of different ML models considered in this overview: (a) Linear regression; (b) Decision trees; (c) K-Nearest
Neighbors; (d) Rule-based Learners; (e) Generalized Additive Models; (f) Bayesian Models.

tests of individual predictors, goodness-of-fit statistics and validation of

the predicted probabilities. The overall model evaluation shows the im-

provement of the applied model over a baseline, showing if it is in fact

improving the model without predictions. The statistical significance of

single predictors is shown by calculating the Wald chi-square statistic.

The goodness-of-fit statistics show the quality of fitness of the model to

the data and how significant this is. This can be achieved by resorting to

different techniques e.g. the so-called Hosmer–Lemeshow (H-L) statistic.

The validation of predicted probabilities involves testing whether the

output of the model corresponds to what is shown by the data. These

techniques show mathematical ways of representing the fitness of the

model and its behavior.

89

Barredo Arrieta et al. 2020, Information Fusion, 58, 82

A number of approaches
• Very fast developing field

• Large number of approaches

• Huge body of literature, see references
below for good reviews

Most recent review papers

• Miller 2019

• Guidotti et al. 2019

• Carvaho et al 2019

• Guo 2020

• Tjoa & Guan 2020

• Meske et al 2020

• Arietta et al 2020

• Ivanovs et al 2021

• Langer et al 2021

• Sokol & Flach 2021

• Zhang et al 2021

• See Minh et al 2021 (Artificial Intelligence Review)
for a review of review papers

Explainable artificial intelligence: a comprehensive review

1 3

on the image classification and NLP topics demonstrated that the CENs performance was
comparable to the well-known models and gave additional explanations behind each pre-
diction. Chen et al. (2020a) introduced adaptive explainable neural networks (AxNN)?a
novel ML framework that supported two primary goals of model accuracy and explain-
ability. The model included ensembles of additive index models and generalized additive
model networks. After that, the outputs of AxNN were separated into high-order interac-
tions to perform interpretation.

Fig. 6 Categorization of the XAI trends that are based on the previous notable research associated with
various ML algorithms. The XAI research trends are classified by analyzing the previous related studies in
depth in order to determine if a post-modeling explainability can be effortlessly implemented for a specific
ML algorithm. The boxes in black, red, and orange refer to the XAI approaches on the text, image, or audio
data. (Color figure online)

 D. Minh et al.

1 3

The main advantage of the hybrid interpretable approach is that it offers robustness
and interpretability to the black-box models (Yeganejou et al. 2019; Gulati et al. 2021).
Other approaches have shown that the hybrid interpretable models simultaneously learn
and provide explanations with both symbolic descriptions, sub-symbolic descriptions,
and inferences (Al-Shedivat et al. 2020).

Fig. 6 (continued)

Barredo Arrieta et al. 2020, Minh et al. 2021

Many approaches to XAI!

December, 2021, pre-print Sokol and Flach

Fig. 2. Depiction of “The Blind Men and the Elephant” parable [80] illustrating that any complex subject can be studied in many
ways. It also symbolises that individual pieces of evidence may o�en be contradictory and insu�icient to understand the bigger
picture without first being aggregated and grounded within a shared context.

This multitude of explanatory information has to be navigated carefully and can be understood as unique probing and
inspection techniques that without a shared context may yield competing or even contradictory evidence akin to the
parable of “The Blind Men and the Elephant” [80] – see Figure 2. Furthermore, as AI and ML processes are directional –
from data, through models, to predictions – the latter components depend on the former, which also applies to their
respective explanations. For example, if data attributes are incomprehensible, explanations of models and predictions
expressed in terms of these features will also be opaque.

Explaining data may be challenging without any modelling assumptions, hence there may not necessarily exist a
pure data explanation method beyond simple summary statistics (e.g., class ratio, per-class feature distribution) and
descriptors (e.g., “the classes are balanced”, “the data are bimodal”, “these features are highly correlated”). Note that
the former simply state well-de�ned properties and may not be considered explanations, whereas the latter can be
contrastive and lead to understanding. Importantly, data are already a model – they express a (subjective and partial)
view of a phenomenon and come with certain assumptions, measurement errors or even embedded cultural biases
(e.g., “How much is a lot?”). “Data statements” [8], “data sheets” [26] and “nutrition labels” [35] attempt to address such
concerns by capturing these (often implicit) assumptions. As a form of data explanations, they characterise important
aspects of data and their collection process in a coherent way, e.g., experimental setup, collection methodology (by
whom and for what purpose), pre-processing (cleaning and aggregation), privacy aspects, the data owners, and so on.

Explainingmodels in whole or in parts (e.g., speci�c sub-spaces or cohorts) should engender a general, truthful and
accurate understanding of their functionality. While some models may be inherently transparent, e.g., shallow decision
trees, their simulatability [55] – the explainee’s ability to simulate their decision process mentally in vivo – may not
produce understanding (see Section 2). Popular model explanations include feature importance [12, 21], feature in�uence
on predictions [24], presenting the model in cognitively-digestible portions [45, 86] and model simpli�cation [17]
(e.g., mimicking its behaviour or a global surrogate). Since not all models operate directly on the input features, an
interpretable representationmay be necessary to convey an explanation, e.g., a super-pixel segmentation of an image [76];
alternatively, if the data are comprehensible, landmark exemplars can be used to explain the behaviour of a model or its
parts [39, 40].

12

Localised explainability may sometimes not be enough
The Blind Man and the Elephant parable

Figure from Sokol & Flach 2021, arXiv: 2112.14466

But if you have to use AI/ML
A quick cheat sheet:

- PCA, clustering and component separation, Random Forests…

- Deep learning

- Probabilistic programming

- Simulation based inference

Use sklearn (https://scikit-learn.org/stable/index.html)

Use PyTorch (https://pytorch.org/)

Use PyRo (https://pyro.ai/)

Use SBI (https://www.mackelab.org/sbi/)
- Great resources for models and tutorials

HuggingFace (https://huggingface.co/)

Papers With Code (https://paperswithcode.com/

https://scikit-learn.org/stable/index.html
https://pyro.ai/
https://huggingface.co/

Want to try
yourself on
some AI now?
Have a look at the Ariel Machine
Learning Data Challenge

/imagine prompt: A female scientist analysing an alien in the war of the worlds

Done!
Any questions?

/imagine prompt: a hyper realistic photo of a group of students cheering that the boring lecture is finally over

Extra slides

Reparameterisation trick for VAEs

