Atmospheric Escape James Owen (Imperial College London)

Outline

- Basics of escape and a discussion of different escape mechanisms
- Thermodynamics of the upper atmosphere, leading to thermal escape
- Hydrodynamic escape for close-in exoplanets
- Evolution of planets with escaping atmospheres
- Observations of atmospheric escape
- Future

Why is atmospheric escape important?

Why does escape matter?

TESS yields (Rp < 4 Rearth), (Bouma et al. 2017)

For most exoplanets which we want to study their properties, formation or atmospheres

atmospheric escape will have already sculpted their atmospheres.

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Non-thermal escape processes:

(Suprathermal) complex processes, typically at the individual particle level.

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Non-thermal escape processes:

(Suprathermal) complex processes, typically at the individual particle level.

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Dominate for close-in exoplanets with primordial atmospheres, dominant in early Solar System terrestrials.

Non-thermal escape processes:

(Suprathermal) complex processes, typically at the individual particle level.

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Dominate for close-in exoplanets with primordial atmospheres, dominant in early Solar System terrestrials.

Non-thermal escape processes:

(Suprathermal) complex processes, typically at the individual particle level.

Dominate for Solar System terrestrials today

Impacts

Stellar Irradiation

Bolometric, and high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) charged particles

Thermal escape processes:

Heating gives the atmospheric constituents sufficient thermal energy to escape the planet's gravity

Dominate for close-in exoplanets with primordial atmospheres, dominant in early Solar System terrestrials.

Non-thermal escape processes:

(Suprathermal) complex processes, typically at the individual particle level.

Dominate for Solar System terrestrials today

Important if happen. Impacts

• Sun's bolometric luminosity ~10³³ erg/s - at Earth in 10⁹ years - 10⁴⁰ erg

- Sun's bolometric luminosity ~10³³ erg/s at Earth in 10⁹ years 10⁴⁰ erg
- Sun's EUV output ~10²⁸ erg/s at Earth in 10⁹ years 10³⁵ erg

- Sun's bolometric luminosity ~10³³ erg/s at Earth in 10⁹ years 10⁴⁰ erg
- Sun's EUV output ~10²⁸ erg/s at Earth in 10⁹ years 10³⁵ erg
- Sun's X-ray output ~10²⁷ erg/s at Earth in 10⁹ years 10³⁴ erg

- Sun's bolometric luminosity ~10³³ erg/s at Earth in 10⁹ years 10⁴⁰ erg
- Sun's EUV output ~10²⁸ erg/s at Earth in 10⁹ years 10³⁵ erg
- Sun's X-ray output ~10²⁷ erg/s at Earth in 10⁹ years 10³⁴ erg
- Sun's stellar wind output ~10²⁶ erg/s at Earth in 10⁹ years 10³³ erg

- Sun's bolometric luminosity ~10³³ erg/s at Earth in 10⁹ years 10⁴⁰ erg
- Sun's EUV output ~10²⁸ erg/s at Earth in 10⁹ years 10³⁵ erg
- Sun's X-ray output ~10²⁷ erg/s at Earth in 10⁹ years 10³⁴ erg
- Sun's stellar wind output ~10²⁶ erg/s at Earth in 10⁹ years 10³³ erg
 - The energy required to unbind Earth's atmosphere in 10⁹ years 10³⁴ erg
- The physics of the different escape mechanisms tells you how efficiently you can use these different energy sources.

Properties of the upper atmosphere $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$ **Bulk atmosphere is molecular**

Properties of the upper atmosphere $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$ Molecules can be thermally dissociated above ~2000K. **Bulk atmosphere is molecular**

Properties of the upper atmosphere $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\mathrm{K} \left(\frac{T_*}{5700 \,\mathrm{K}}\right) \left(\frac{R_*}{R_{\odot}}\right)^{1/2} \left(\frac{a}{0.03 \,\mathrm{AU}}\right)^{-1/2}$ Molecules can be thermally dissociated \bullet above ~2000K. • Require individual photons to break apart molecules and atoms. **Bulk atmosphere is molecular**

Properties of the upper atmosphere $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$ Molecules can be thermally dissociated above ~2000K. • Require individual photons to break apart molecules and atoms. • The binding energy of a molecular bond is ~5eV (photon wavelength < 0.2μ m). **Bulk atmosphere is molecular**

Properties of the upper atmosphere $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\mathrm{K} \left(\frac{T_*}{5700 \,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\mathrm{AU}}\right)^{-1/2}$ Molecules can be thermally dissociated above ~2000K. • Require individual photons to break apart molecules and atoms. • The binding energy of a molecular bond is ~5eV (photon wavelength < 0.2μ m). • The binding energy of an electron in an atom is ~ 10 eV (photon wavelength < 0.1µm). **Bulk atmosphere is molecular**

A star's spectrum

Wavelength, λ [Å]

Properties of the upper atmosphere

←MM~-

EUV Heated

Properties of the upper atmosphere

X-ray/FUV Heated

EUV Heated

Bolometric heating from star/interior

←₩₩~

The upper layers of the atmosphere will be atomic/ionized.

The upper layers of the atmosphere will be atomic/ionized.

This has important consequences for both non-thermal and

The concept of the "exobase" **Collisions** between particles become rarer. **Decreasing density**

Neutrals: $\sigma_{col} \sim 10^{-15} \text{ cm}^2$ **Ions:** σ_{col}~10⁻¹³ cm²

Neutrals: $\sigma_{col} \sim 10^{-15} \text{ cm}^2$ lons: σ_{col}~10⁻¹³ cm²

Photon absorption cross-sections

Neutrals: $\sigma_{col} \sim 10^{-15} \text{ cm}^2$ lons: σ_{col}~10⁻¹³ cm²

Photon absorption cross-sections

ar onizeo Atomic Molecul

Thought to be dominant on Mars today

Thought to be dominant on Mars today

Why does this work?

Thought to be dominant on Mars today

Why does this work?

Neutrals: $\sigma_{col} \sim 10^{-15} \text{ cm}^2$ lons: $\sigma_{col} \sim 10^{-13} \text{ cm}^2$

Thought to be dominant on Mars today

Why does this work?

Neutrals: $\sigma_{col} \sim 10^{-15} \text{ cm}^2$ lons: $\sigma_{col} \sim 10^{-13} \text{ cm}^2$

Once neutral, the particle has a much longer mean-free path and can become collisionless, and escape.

See Gronoff et al. (2022) for a recent review of many non-thermal escape processes

 $T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\mathrm{K} \left(\frac{T_*}{5700}\right)$

Bolometric heating cannot get close to the escape temperature.

$$\left(\frac{R_*}{00 \text{ K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \text{ AU}}\right)^{-1/2}$$

$$T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$$

The concept of the escape temperature

$$\frac{GM_p\mu r}{R_p}$$

Bolometric heating cannot get close to the escape temperature.

 m_h

$$T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$$

The concept of the escape temperature

$$\frac{GM_p\mu r}{R_p}$$

Bolometric heating cannot get close to the escape temperature.

$$\frac{GM_p\mu m_h}{D} \sim k_b T_{\rm esc}$$

$$T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$$

The concept of the escape temperature

$$\frac{GM_p\mu m}{R_p}$$

 $T_{\rm esc} \sim 8000 \ {\rm K}$

Bolometric heating cannot get close to the escape temperature.

$$\frac{n_h}{d} \sim k_b T_{\rm esc}$$

$$\mu \left(\frac{M_p}{1\mathrm{M}_{\oplus}}\right) \left(\frac{R_p}{1\mathrm{R}_{\oplus}}\right)^{-1}$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} \mathrm{d}\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} \mathrm{d}\nu$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} \mathrm{d}\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} \mathrm{d}\nu \qquad F \sigma(T_{\mathrm{irr}})$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} d\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} d\nu \qquad F \sigma(T_{\rm irr})$$

$$T \sim T_{\rm eq} \left(\frac{\sigma(T_{\rm irr})}{\sigma(T)} \right)^{1/4}$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} \mathrm{d}\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} \mathrm{d}\nu \qquad F \sigma(T_{\mathrm{irr}})$$

$$T \sim T_{\rm eq} \left(\frac{\sigma(T_{\rm irr})}{\sigma(T)} \right)^{1/4}$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} d\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} d\nu \qquad F \sigma(T_{\rm irr})$$

$$T \sim T_{\rm eq} \left(\frac{\sigma(T_{\rm irr})}{\sigma(T)} \right)^{1/4}$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

wavenumber, cm⁻¹

$$\int_{-\infty}^{\infty} F_{\nu} \sigma_{\nu} d\nu \sim \int_{-\infty}^{\infty} B_{\nu}(T) \sigma_{\nu} d\nu \qquad F \sigma(T_{irr})$$

$$T \sim T_{eq} \left(\frac{\sigma(T_{irr})}{\sigma(T)} \right)^{1/4}$$
Atomic C and O - 200
$$\int_{10^{20}}^{10^{20}} \frac{10^{20}}{10^{20}}$$

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

below 5,000-10,000 K

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

below 5,000-10,000 K

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

below 5,000-10,000 K

The gas temperature is set by balancing heating and cooling.

Considering just radiative processes now.

Fast electron collides with surrounding particles heating up gas

Fast electron collides with

Fast electron collides with surrounding particles heating up gas

Fast electron collides with surrounding particles heating up gas

Fast electron collides with surrounding particles heating up gas

Calculated with the Chianti tool

Energy levels of hydrogen

Calculated with the Chianti tool

Energy levels of hydrogen

Calculated with the Chianti tool

Density = 10⁸ cm⁻³, Singly ionized Solar Composition 10-19 High energies required to excite electrons in atomic/ionic gas will come back when we consider 10-20 how to observe upper atmospheres 10-21 Cooling Rate/Volume 10-22 10-23 10^{-24} 10-25 10³ 10^{4} 10 Temperature [K]

Calculated with the Chianti tool

Altitude

Equilibrium temperature

Temperature

Temperature

Temperature

EUV Heated

Atomic \rightarrow Ionized

X-ray/FUV Heated Molecular \rightarrow Atomic

Temperature

Temperature

Temperature

Equilibrium temperature

Temperature

EUV Heated

Atomic → Ionized

X-ray/FUV Heated Molecular → Atomic

Temperature

EUV Heated

Atomic \rightarrow lonized

X-ray/FUV Heated Molecular → Atomic

> This happens for more weakly irradiated planets (Earth), not for most highly irradiated exoplanets (e.g. Murray-Clay et al. 2009)

Temperature

Thermal driven escape

$$T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \,\,\mathrm{K} \left(\frac{T_*}{5700 \,\,\mathrm{K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \,\,\mathrm{AU}}\right)^{-1/2}$$

The concept of the escape temperature

 $T_{\rm esc} \sim 8000 \ {\rm K}$

$$\mu \left(\frac{M_p}{1\mathrm{M}_{\oplus}}\right) \left(\frac{R_p}{1\mathrm{R}_{\oplus}}\right)^{-1}$$

Thermal driven escape

$$T_{\rm eq} = T_* \sqrt{\frac{R_*}{2a}} \sim 1500 \text{ K} \left(\frac{T_*}{5700 \text{ K}}\right) \left(\frac{R_*}{R_\odot}\right)^{1/2} \left(\frac{a}{0.03 \text{ AU}}\right)^{-1/2}$$

The concept of the escape temperature

The stellar UV/X-ray photons heat the upper atmospheres to temperatures approaching the escape temperature

 $T_{\rm esc} \sim 8000 \ {\rm K}$

$$\mu \left(\frac{M_p}{1\mathrm{M}_{\oplus}}\right) \left(\frac{R_p}{1\mathrm{R}_{\oplus}}\right)^{-1}$$

Thermal escape regimes: collisional vs collisionless, an intuitive picture...

Thermal escape regimes: collisional vs collisionless, an intuitive picture...

Thermal escape regimes: collisional vs collisionless, an intuitive picture...

Thermal escape regimes: collisional vs collisionless, an intuitive picture...

Bulk of particles cannot escape: Collisionless Jeans Escape

Bulk of particles can escape: Collisional Hydrodynamic Escape

- The transition from collisionless (Jeans escape) to collisional (hydrodynamic) escape occurs when the typical thermal velocity of particles is approximately the escape velocity at the exobase.

- The transition from collisionless (Jeans escape) to collisional (hydrodynamic) escape occurs when the typical thermal velocity of particles is approximately the escape velocity at the exobase.

- Hydrodynamic escape occurs at stronger irradiation levels and is **much** more efficient than other escape processes, as the bulk of the gas is removed rather than individual particles.

- The transition from collisionless (Jeans escape) to collisional (hydrodynamic) escape occurs when the typical thermal velocity of particles is approximately the escape velocity at the exobase.

- Hydrodynamic escape occurs at stronger irradiation levels and is **much** more efficient than other escape processes, as the bulk of the gas is removed rather than individual particles.
 - Hydrodynamic escape occurs for hot, lowdensity planets with ionized regions.

rock ¶√a

Close-in Exoplanets

rock A^d

Close-in Exoplanets

/Rrock

Close-in Exoplanets

/Rrock

Close-in Exoplanets

Break: questions?

Intuitive insights

- processes cannot play a role.

 Hydrodynamic escape roughly occurs when the thermal velocity of gas exceeds the escape velocity before the gas becomes collision less.

• Since hydrodynamic escape removes the bulk of the fluid, other escape

Assumptions

- Assume gas can be treated as a continuum fluid.
- Gas particles follow the Maxwell-Boltzmann distribution.
- Check a posteriori that approximation holds: collisional mean-free path is smaller than the fluid scale length.

Hydrodynamic escape: must overcome any external pressure

Stellar wind vs planet pressure

Distance [AU]

Stellar wind vs planet pressure

Distance [AU]

A hydrodynamic approach

A hydrodynamic approach

1D streamline, **assuming** spherical symmetry

A hydrodynamic approach

1D streamline, **assuming** spherical symmetry

U

U

U

U

Disturbance moves at the sound-speed (in the co-moving frame)

Moves in at u+cs

U

Moves in at u-cs

Moves in at u+cs

U

So if u>cs, information of this perturbation cannot propagate upstream (toward the planet)

U

So if u>c_s, information of this perturbation cannot propagate upstream (toward the planet)

So anything that happens outside the sonic point cannot affect the outflow or the mass-loss rate.

Transition between hydrodynamic and Jeans escape

- on the hydrodynamic outflow.
- An outflow that becomes collisionless before the sonic point can no cannot escape: Jeans Escape.

An outflow that becomes collisionless after the sonic point has no effect

longer accelerate gas parcels to higher velocities (u<vesc), so bulk outflow

 The transition between Jeans Escape and hydrodynamic escape is the flow becomes collisionless at the sonic point of the hydrodynamic outflow.

EUV

EUV

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{G M_p \Delta M}{R_{XUV}}$

 $\dot{m} \equiv \frac{\Delta M}{\Delta t} \sim \Im \frac{\pi R_{\rm XUV}^3 F_*}{GM_p}$

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{GM_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{GM_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{GM_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{G M_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

You lose 13.6eV of a photons energy to ionization.

At the sonic-point:

Specific kinetic energy:

Specific thermal energy:

Specific gravitational energy:

$$\frac{GM}{R_s} = 2c_s^2$$

"Energy-limited" photo evaporation

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{G M_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

You lose 13.6eV of a photons energy to ionization.

At the sonic-point:

Specific kinetic energy:

Specific thermal energy:

Specific gravitational energy:

$$\frac{GM}{R_s} = 2c_s^2$$

"Energy-limited" photo evaporation

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{G M_p \Delta M}{R_{XUV}}$

Mass-loss "efficiency"

You lose 13.6eV of a photons energy to ionization.

Efficiency << 1, ~0.01-0.2

 $\pi R_{XUV}^2 F_* \Delta t \sim \frac{G M_p \Delta M}{R_{\rm NUV}}$

Mass-loss "efficiency"

You lose 13.6eV of a photons energy to ionization.

Efficiency << 1, ~0.01-0.2

Mass-loss "efficiency"

You lose 13.6eV of a photons energy to ionization.

Efficiency << 1, ~0.01-0.2

Radiative process:

Takes a finite time to escape planet: time to cool.

Radiative process:

Takes a finite time to escape planet: time to cool.

Radiative process:

Takes a finite time to escape planet: time to cool.

Where to go?

A&A 619, A151 (2018) https://doi.org/10.1051/0004-6361/201833737 © ESO 2018

Grid of upper atmosphere models for 1–40 M_{\oplus} planets: application to CoRoT-7 b and HD 219134 b,c

D. Kubyshkina¹, L. Fossati¹, N. V. Erkaev^{2,3}, C. P. Johnstone⁴, P. E. Cubillos¹, K. G. Kislyakova^{4,1}, H. Lammer¹, M. Lendl¹, and P. Odert^{1,5}

Extending a grid of hydrodynamic planetary upper atmosphere models

DARIA I. KUBYSHKINA¹ AND LUCA FOSSATI²

¹ Trinity College Dublin
Dubline-2 College Green
Dublin, Ireland
² Space Research Institute
8042 Graz, Austria

Evolution

 $|U| \sim \frac{GM^2}{R}$

 $|U| \sim \frac{GM^2}{R} \qquad \sim Nk_B T$

$$T \sim \frac{GM\mu m_h}{k_B R} \sim 800$$

 $|U| \sim \frac{GM^2}{R} \qquad \sim Nk_B T$

 $5000 \,\mathrm{K} \,\mu \left(\frac{M}{1 \,\mathrm{M}_{\oplus}}\right) \left(\frac{R}{1 \,\mathrm{R}_{\oplus}}\right)^{-1}$

 $|U| \sim \frac{GM^2}{R}$

$$T \sim \frac{GM\mu m_h}{k_B R} \sim 8000 \text{ K } \mu \left(\frac{M}{1 \text{ M}_{\oplus}}\right) \left(\frac{R}{1 \text{ R}_{\oplus}}\right)^{-1}$$

Exoplanets are born hot, and they cool over time.

$$\frac{A^2}{R} \sim Nk_B T$$

Planets with primordial atmospheres contract significantly over their lifetimes

Reminder - earlier

Reminder - earlier

Reminder - earlier

Giant planets are stable against atmospheric loss, without other processes

Population-level work on atmospheric escape

Owen & Wu (2013)
Population-level work on atmospheric escape

Owen & Wu (2013)

Population-level work on atmospheric escape

Owen & Wu (2013)

Kepler Candidates as of February 1, 2011

Rp/Rrock

Kepler Candidates as of February 1, 2011

Rp/Rrock

Why do you get an occurrence valley?

Envelope Mass

Envelope Mass

Envelope Mass

Envelope Mass

Envelope Mass

Envelope Mass

The Radius Gap/Valley

Fulton et al. 2017

Model comparison

tcool ~

'Boil-off'

tclear < 0.1 Myr

t_{cool} ~ Myr

'Boil-off'

t_{cool} ~ Myr

'Boil-off'

First stage of mass-loss: "Boil-off"

- t_{cool} ~ Myr
- 'Boil-off'

Boil-off in action

James Rogers (UCLA), Rogers et al. (2023)

Degeneracy in M-R space

- ,

Degeneracy in M-R space

Boil-Off Initial Conditions

Degeneracy in M-R space

vations Obser

Break: questions?

Hydrogen Energy Levels

HD 209458b Vidal Madjar et al. (2003)

Hydrogen Energy Levels

HD 209458b Vidal Madjar et al. (2003)

Lyman-alpha observations

-0.54-0.85n = 4-1.51 n = 3E/eV n = 2-3.40Lyman-alpha λ =0.1215 µm -13.59n = 1

Hydrogen Energy Levels

HD209458 b - Lyman-alpha

HD209458 b - Lyman-alpha

HD209458 b - Lyman-alpha

HD209458 b - Lyman-alpha

Ehrenreich et al. (2015)

GJ436 b - Lyman-alpha

Lavie et al. (2017)

Ehrenreich et al. (2015)

GJ436 b - Lyman-alpha

Lavie et al. (2017)

What have we learned?

What have we learned?

K2-25b Rockcliffe et al. (2021)

Lyman-alpha mysteries

- Why do we see some transits and not others?
- Why are the transits asymmetric?

Why is the absorption at such high-velocities and often blue-shifted?

Simulations

McCann et al. (2019)

Simulations

McCann et al. (2019)

Simulations

McCann et al. (2019)

Hazra et al. (2022)

Debrecht et al. (2022)

Simulations

McCann et al. (2019)

log (n_a), cm⁻³ -150 — -300 · -150 150 Khodachenko et al. (2019)

Macleod & Oklopčić (2022)

х

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

1 ¹S (singlet)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

1 ¹S (singlet)

- Originally indicated in numerical work by Seager & Sasselov (2000) and Turner et al. (2016).
- Understanding He 10830 Ang absorption for exoplanet escape comes from Oklopčić & Hirata (2018)

First detection with HST 1250 1000 ਉੱ relative altitude 750 500 250

Spake et al. (2018) Wasp-107b

He can be done at high-resolution from the ground

He has become incredibly successful in the last 5 years

He has become incredibly successful in the last 5 years

He has become incredibly successful in the last 5 years Neutral fraction

Tripathi et al. (2015)

Future...

Light species can still escape

Heavy species to not make it to high altitudes and their escape is inefficient

Heavy element fractionation

What happens as the light species escape, leaving behind heavy elements?

New questions, new physics ... a new code

Matthäus Schulik

http://github.com/schulik/aiolos

Aiolos

- 1D well-balanced hydro scheme.
- Multi-species with drag
- Multi-band ionizing and non-ionizing radiative transfer.
- Chemistry

Models of fractionated escape

Models of fractionated escape

Models of fractionated escape

C/O variations from fractionated escape

 $4m_{\oplus}$, $F_{UV} = 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \text{ lowC}$

C/O variations from fractionated escape

 $4m_{\oplus}$, $F_{UV} = 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \text{ lowC}$

C/O variations from fractionated escape

As heavy elements build-up in the atmosphere hydrogen escape is suppressed

 $4m_{\oplus}$, $F_{UV} = 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \text{ lowC}$

One way to investigate this - desert dwellers

West et al. (2019)

One way to investigate this - desert dwellers

West et al. (2019)

Fractionated loss

Fractionated loss

Fractionated loss

Heavy element dominated Atmosphere

Fractionated loss

Heavy element dominated **Atmosphere**

Perhaps with trapped Hydrogen?

Summary: atmospheric escape matters for exoplanet atmospheres

There's still lots to do!

Questions?