
Atmospheric Escape
James Owen (Imperial College London)



Outline
• Basics of escape and a discussion of different escape mechanisms


• Thermodynamics of the upper atmosphere, leading to thermal escape


• Hydrodynamic escape for close-in exoplanets


• Evolution of planets with escaping atmospheres


• Observations of atmospheric escape


• Future



Why is atmospheric escape important?
McDonald et al. (2019)

Kepler planets are billions of years old



Why does escape matter?
TESS yields (Rp < 4 Rearth), (Bouma et al. 2017)



For most exoplanets which we want to 
study their properties, formation or 

atmospheres 

atmospheric escape will have already 
sculpted their atmospheres.  



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity

Non-thermal escape processes:


(Suprathermal) complex processes, typically

at the individual particle level. 



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity

Non-thermal escape processes:


(Suprathermal) complex processes, typically

at the individual particle level. 

Impacts



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity

Non-thermal escape processes:


(Suprathermal) complex processes, typically

at the individual particle level. 

Impacts

Dominate for close-in exoplanets 
with primordial atmospheres, 

dominant in early Solar System 
terrestrials.



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity

Non-thermal escape processes:


(Suprathermal) complex processes, typically

at the individual particle level. 

Impacts

Dominate for close-in exoplanets 
with primordial atmospheres, 

dominant in early Solar System 
terrestrials.

Dominate for Solar System terrestrials today



Atmospheric escape is a collection of processes

Stellar Irradiation 

Bolometric, and  
high energy (XUV) photons

Stellar wind

Rapidly moving (100s km/s) 
charged particles

Thermal escape processes:


Heating gives the atmospheric

constituents sufficient thermal


energy to escape the planet’s gravity

Non-thermal escape processes:


(Suprathermal) complex processes, typically

at the individual particle level. 

Impacts

Dominate for close-in exoplanets 
with primordial atmospheres, 

dominant in early Solar System 
terrestrials.

Dominate for Solar System terrestrials today

Important if happen.
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Energy scales
• Sun’s bolometric luminosity ~1033 erg/s - at Earth in 109 years - 1040 erg

• Sun’s EUV output ~1028 erg/s - at Earth in 109 years - 1035 erg

• Sun’s X-ray output ~1027 erg/s - at Earth in 109 years - 1034 erg

• Sun’s stellar wind output ~1026 erg/s - at Earth in 109 years - 1033 erg

The energy required to unbind Earth’s atmosphere in 109 years - 1034 erg


The physics of the different escape mechanisms tells you how efficiently you can use these 

different energy sources.
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Energy scales over time
Gallet & Bouvier (2013)
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Energy scales over time

Earth

Sub-Neptune

Hot Jupiter
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Properties of the upper atmosphere

• Molecules can be thermally dissociated 
above ~2000K. 

• Require individual photons to break apart 
molecules and atoms.

• The binding energy of a molecular bond is 
~5eV (photon wavelength < 0.2μm).

• The binding energy of an electron in an 
atom is ~ 10 eV (photon wavelength < 
0.1μm).

Bulk atmosphere is molecular
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A star’s spectrum

Sufficiently energetic to dissociate molecules

Sufficiently energetic to ionize atoms

Loyd et al. 2016

σ~10-17 cm2σ~10-19 cm2 σ~10-19 cm2

σ~10-25 cm2
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The upper layers of the atmosphere will be atomic/ionized. 

This has important consequences for both non-thermal and 
thermal escape.
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A dominant non-thermal escape 
processes: photochemical escape
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Escape

Why does this work? Neutrals: σcol~10-15 cm2 

Ions: σcol~10-13 cm2
Once neutral, the particle has a much longer  

mean-free path and can become collisionless, and escape. 

Thought to be dominant on Mars today



See Gronoff et al. (2022) for a 
recent review of many non-thermal 

escape processes



Thermal driven escape

Bolometric heating cannot get close to the escape temperature.



Thermal driven escape

The concept of the escape temperature

Bolometric heating cannot get close to the escape temperature.



Thermal driven escape

The concept of the escape temperature

Bolometric heating cannot get close to the escape temperature.



Thermal driven escape

The concept of the escape temperature

Bolometric heating cannot get close to the escape temperature.



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K




Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K




Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K




Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K


Cooling in atomic/ionized gas is very inefficient 
below 5,000-10,000 K



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K

- 10,000 K


Cooling in atomic/ionized gas is very inefficient 
below 5,000-10,000 K



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 

Considering just radiative processes now.

ExoMol: Li et al. (2015)

Atomic C and O - 2000 K

- 10,000 K


Cooling in atomic/ionized gas is very inefficient 
below 5,000-10,000 K



Heating and cooling 

M
ol

ec
ul

ar

At
om

ic

Io
ni

ze
d

The gas temperature is set by balancing heating and cooling. 
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ExoMol: Li et al. (2015)
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- 10,000 K


Cooling in atomic/ionized gas is very inefficient 
below 5,000-10,000 K

Significantly hotter 
than equilibrium temperature
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High energies required to excite 
electrons in atomic/ionic gas will 

come back when we consider 
how to observe upper 

atmospheres
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This happens for more weakly irradiated planets 
(Earth), not for most highly irradiated exoplanets 

(e.g. Murray-Clay et al. 2009)
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Thermal driven escape

The concept of the escape temperature

The stellar UV/X-ray photons heat the upper atmospheres to temperatures approaching the escape temperature
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• The transition from collisionless (Jeans 
escape) to collisional (hydrodynamic) 
escape occurs when the typical thermal 
velocity of particles is approximately the 
escape velocity at the exobase.

• Hydrodynamic escape occurs at stronger 
irradiation levels and is much more efficient 
than other escape processes, as the bulk of 
the gas is removed rather than individual 
particles.

• Hydrodynamic escape occurs for hot, low-
density planets with ionized regions.
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Close-in Exoplanets
Jantof-Hutter et al. (2016)

~Water/Ice

Must be a solid core 
with H/He envelope

Hydrodynamic Escape  
Dominates



Break: questions?



Intuitive insights

• Hydrodynamic escape roughly occurs when the thermal velocity of gas 
exceeds the escape velocity before the gas becomes collision less.


• Since hydrodynamic escape removes the bulk of the fluid, other escape 
processes cannot play a role.



Assumptions

• Assume gas can be treated as a continuum fluid.


• Gas particles follow the Maxwell-Boltzmann distribution.


• Check a posteriori that approximation holds: collisional mean-free path is 
smaller than the fluid scale length.



Hydrodynamic escape: must 
overcome any external pressure
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Stellar wind vs planet pressure

Hot Jupiter

Sub-neptune

Generally, stellar wind insufficient to stop 
hydrodynamic outflow from planet 
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Importance of sonic-point
u

Disturbance moves at the sound-speed (in the co-moving frame) 

Moves in at u+csMoves in at u-cs

So if u>cs, information of this perturbation cannot propagate upstream (toward the planet)

So anything that happens outside the sonic point cannot affect the outflow or the mass-loss rate.



Transition between hydrodynamic and Jeans 
escape

• An outflow that becomes collisionless after the sonic point has no effect 
on the hydrodynamic outflow.


• An outflow that becomes collisionless before the sonic point can no 
longer accelerate gas parcels to higher velocities  (u<vesc), so bulk outflow 
cannot escape: Jeans Escape.


• The transition between Jeans Escape and hydrodynamic escape is the 
flow becomes collisionless at the sonic point of the hydrodynamic outflow.
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“Energy-limited” photo evaporation

EUV

Mass-loss “efficiency”

e-

+

You lose 13.6eV of a photons 
energy to ionization.

At the sonic-point: 

Specific kinetic energy: 

Specific thermal energy: 

Specific gravitational energy:
Efficiency << 1, ~0.01-0.2

Important for weak gravities

Still lose energy to radiative processes
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Owen & Jackson (2012)

Radiative process: 

Takes a finite time to escape 
planet: time to cool.

“Hydrodynamic processes” 

Excess thermal + kinetic energy 
from heating

Radiative 
Cooling  

Dominant



Where to go?



Evolution
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What do exoplanets do without escape?

Exoplanets are born hot, and they cool over time.

Fortney & Nettelmann (2010)

Planets with primordial atmospheres contract significantly over their lifetimes
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Reminder - earlier

For sub-Neptune at 0.1 AU 
Including contraction

Most important 
at the age of  

a few 100 Myr
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Hot Jupiters
Baraffe et al. (2004), efficiency = 1, Rxuv = 3Rp

Radiative 
Cooling  

Dominant
Earlier:

Giant planets are stable against atmospheric loss, 
without other processes 

Hubbard et al. (2007)
Valsecchi et al. (2014)

Including high-e migration, photoevaporation and 
Roche Lobe overflow.
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Population-level work on atmospheric escape

Owen & Wu (2013)

Desert

Gap
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Some sub-Neptunes must have primordial 
atmospheres

~Water/Ice

Must be a solid core 
with H/He envelope

Atmospheric Escape?

Jantof-Hutter et al. (2016)

Desert?
Fulton et al. (2017)



Why do you get an 
occurrence valley?
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The Radius Gap/Valley

Fulton et al. 2017

Peaks separated by 
factor of 2 in radius



Model comparison

Rogers & Owen (2021)
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tcool ~ Myr

tclear < 0.1 Myr

‘Boil-off’

The Birth of Primordial Sub-Neptune Atmosphere
First stage of mass-loss: “Boil-off”



Boil-off in action

James Rogers (UCLA), Rogers et al. (2023)

Planets 
herded towards 
a few percent 
atmospheres 

by mass.
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Lyman-alpha observations

Hydrogen Energy Levels

Lyman-alpha λ=0.1215 μm
e-

HD 209458b Vidal Madjar et al. (2003)

Geocoronal emissionISM absorption 
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HD209458 b - Lyman-alpha

~15% 
Transit depth 

- Escape!

Typical velocity of outflows is ~10 km/s

We see absorption at ~100 km/s

Evidence of a sharp ingress, 
and slow egress
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GJ436 b - Lyman-alpha

Ehrenreich et al. (2015)

Stellar variability

Lavie et al. (2017)
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What have we learned?

K2-25b Rockcliffe et al. (2021)



Lyman-alpha mysteries

• Why is the absorption at such high-velocities and often blue-shifted?


• Why do we see some transits and not others?


• Why are the transits asymmetric?
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Simulations

McCann et al. (2019)

Khodachenko et al. (2019)

Macleod & Oklopčić (2022)

Hazra et al. (2022)

Debrecht et al. (2022)
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First detection with HST

Spake et al. (2018) Wasp-107b



He can be done at high-resolution from the 
ground

Allart et al. (2018) - HAT-P-11b
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He has become incredibly successful in the last 5 
years

Wasp-107b - Kirk et al. 2020

HAT-P-11b - Allart et al. 2018

HD209458b - Alonso-Floriano 2019

Wasp-69b - Nortmann et al. 2019 

HD189733b - Salz et al. 2019

TOI- 560.01 - Zhang et al. 2022

Tripathi et al. (2015)
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Heavy species to not make 
it to high altitudes and their   

escape is inefficient
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still escape
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Heavy element fractionation

Fractionated escape

Fractionation factor: c.f. Zahnle & Kasting (1986)



What happens as the light species 
escape, leaving behind heavy 

elements?



New questions, new physics … a new code

Matthäus Schulik

Aiolos

• 1D well-balanced 
hydro scheme. 


• Multi-species with 
drag


• Multi-band ionizing 
and non-ionizing 
radiative transfer.


• Chemistry
http://github.com/schulik/aiolos
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C/O variations from fractionated escape

C/O ratio will result due to escape

As heavy elements build-up in 
the atmosphere hydrogen 

escape is suppressed
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One way to investigate this - desert dwellers

NGTS-4b

West et al. (2019)



Schematic picture



Schematic picture



Schematic picture

Fractionated loss



Schematic picture

Fractionated loss



Schematic picture

Fractionated loss

Heavy element dominated  
Atmosphere



Schematic picture

Fractionated loss

Heavy element dominated  
Atmosphere

Perhaps with trapped Hydrogen?



Summary: atmospheric escape 
matters for exoplanet atmospheres 

There’s still lots to do! 

Questions?


