Beyond 1D atmospheres

Jérémy Leconte

 \star Mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0$$

 \star Momentum conservation

$$\frac{\mathrm{D}\boldsymbol{v}}{\mathrm{D}t} + 2\boldsymbol{\Omega} \times \boldsymbol{v} = -\frac{1}{\rho}\nabla \boldsymbol{p} - \nabla \boldsymbol{\Phi}$$

 \star Equation of state

$$p = \rho RT$$

 \star Conservation of energy

$$\frac{DS}{Dt} = H - Q$$

Altitude

 Ω_e

 Ω_e

Latitude

Relative Humidity

Can we actually see it ?

0001 DERIVED DATA 26 AUG 93238 120000 00001 00001 01.00

Relative Humidity

The impact of the Hadley cell

Leconte et al. (Nature, 2013)

Thermodynamics of the Hadley Cell

Thermodynamics of the Hadley Cell

Pressure

What about synchronously rotating planets?

What about synchronously rotating planets?

Two prototypes of synchronous planets

Planet name		Gl 581 c	HD 85512 b
Stellar luminosity	$L_{\star} [L_{\odot}]$ $M_{\star} [M_{\odot}]$ $a [AU]$ $P_{orb} [d]$ e	0.0135	0.126
Stellar mass		0.31	0.69
Orbital semi-major axis		0.073	0.26
Orbital period		13	58
Orbital eccentricity		0-0.05	0-0.11
Mass	$M_{p} [M_{\oplus}]$ $R_{p} [R_{\oplus}]$ $g [m s^{-2}]$	6.25	4.15
Radius		1.85	1.60
Surface gravity		18.4	15.8
Stellar Flux Equilibrium temperature	$F_{\star} [W/m^2]$ $\bar{T}_{equ} [K]$	3300 317	Earth 2500 1366 296 255

$$\bar{T}_{\text{equ}} = \left(\frac{\left(1 - \bar{A}\right)F_{\star}}{4\,\sigma_{\text{SB}}}\right)^{1/4}$$

Temperature maps (°C)

(dry earthlike atmosphere)

Leconte et al. (A&A, 2013a)

wind maps (m/s)

U

GI 581

0

HD 85512

Super-rotation vs Stellar/Antistellar circulation! Jets impede redistribution!

Leconte et al. (A&A, 2013a)

Circulation regime on synchronous exoplanets

Showman & Polvani (2011)

«Eastward Jets pumped by the interaction of the mean flow with planetary Rossby and Kelvin waves»

Leconte et al. (A&A, 2013a)

wind maps (m/s)

Near Surface ~4km Altitude -90. -90. 90. 180. -180. 180. -180. 90. 0. 0. 90. 90. 90. b =900.mb 45. 45. 45. latitude (°) U 0. 0. 0. -45. -45. -45. -90-90. 180. -90. 90. -180. ·180. -90. 90. 180. 0. 0. 90. 90. 90. p = 200.mb*¤* =900.mb 45. 45. 45. latitude (°) 0. 0. 0. -45. -45. -45HD85512b HD85512b -90. -90- 90 -90. 90. 180. ·180. -90. -180. 90. 0. 0. 180. 90. 90. 90. 200.mb *p* =900.mb 0 C 45. 45. 45. latitude (°) 0 0. 0. -45 -45. -45. GI581c. Ω/5 GI581c. $\Omega/5$ -90 -90. 90. 180. -180. -90. 0. ·180. -90. 90. 180. 0. longitude (°) longitude (°)

GI 581 0 HD 85512

<u>S</u> **GI 581** Does atmospheric dynamics affect observables?

Expected dynamics on tidally locked planets

8.7 **µ**m

no atmosphere

0.1 bar (CO_2)

Brightness temperature (K)

I bar (CO₂)

Expected dynamics on tidally locked planets

Turbet et al. (2021)

a Surface oceans

Temperate, water-poor atmosphere (Yang et al.³¹ and Way et al.⁴)

Turbet et al. (Nature, 2021)

Observed trends in emission temperature...

Hotter planets have bigger day/night temperature contrasts

Komacek & Showman (2016)

... Explained by atmospheric dynamics

What implications for transit spectroscopy?

Opening angle of the transmission region (limb)

Opening angle of the transmission region (limb)

Temperature maps for GJ1214b (transit photosphere)

Caldas, Leconte, et al. (A&A, 2019)

Need a 3D radiative transfer tool

Caldas, Leconte, et al. (A&A, 2019) Falco et al. (A&A, 2021) alias COVID GUY

What if there is also a chemical day-night contrast

What if there is also a chemical day-night contrast

