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Some scientific questions

* What is the history of these planets ?
* How did they form ?
= \\Vhat is the chemical composition of their atmosphere ?

= \\/hat are the elemental ratios ?

= Are they the same than their host star ? or are they enriched ?

= Determine one or several scenarios of planetary formation, common
with the Solar System (if possible)
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Out of equilibrium processes

. Thermochemical Equilibrium: depends only of P,
. T, elementary abundances

intense stellar irradiation - photodissociations

+ high temperatures # - Vigorous dynamic :

+ strong temperature gradient horizontale circulation (winds)
between day and nightside vertical mixing (convection, turbulence)
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Out of equilibrium processes

. Thermochemical Equilibrium: depends only of P,
. T, elementary abundances

intense stellar irradiation - photodissociations

+ high temperatures # - Vigorous dynamic :

+ strong temperature gradient horizontale circulation (winds)
between day and nightside vertical mixing (convection, turbulence)

' To interpret observations + to understand these atmospheres

' = Need kinetic models !



Structure of giant gaseous exoplanets

* From their small density, we know that their atmospheres
are dominated by Hydrogen (H2 or H) and Helium [ thermochemical equilibrium

—— kinetic model
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Structure of giant gaseous exoplanets

* From their small density, we know that their atmospheres
are dominated by Hydrogen (Hz2 or H) and Helium

-------- thermochemical equilibrium

—— kinetic model

» Quenching: abundances depart
from thermo equilibrium.
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Structure of giant gaseous exoplanets

* From their small density, we know that their atmospheres
are dominated by Hydrogen (H2 or H) and Helium [ thermochemical equilibrium

—— kinetic model
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Structure of giant gaseous exoplanets

* From their small density, we know that their atmospheres
are dominated by Hydrogen (H2 or H) and Helium [ thermochemical equilibrium

—— kinetic model

HD 189733b
UV irradiation ) .
from the star destroys or produces 10
molecules. 10-3
1072

» Quenching: abundances depart
from thermo equilibrium.
They are frozen when

Pressure (mbar)
[
(@)
o

Tchemical > Tdynamical 102
This level depends on teiemicai SO 1S |
proper to each species

» Thermo equilibrium: temperature is : , \ | Hz0
very high so kinetics is fast enough to 19-5 156 19-7 10-6¢ 10-> 10-%4 10-3 10-2 10-! 100
reproduce thermo equilibrium Mole fraction




Structure of giant gaseous exoplanets

* From their small density, we know that their atmospheres
are dominated by Hydrogen (H2 or H) and Helium [ thermochemical equilibrium

—— kinetic model

HD 189733b

UV irradiation ) .
from the star destroys or produces 10
molecules. 10-3
Effect can be seen as deep as o2
10/100 mbar |
81071
S ]
* Quenching: abundances depart ' 10°:
from thermo equilibrium. 2
» 101
They are frozen when < .

Tchemical > Tdynamical
This level depends on teiemicai SO 1S

proper to each species

» Thermo equilibrium: temperature is
very high so kinetics is fast enough to
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Structure of giant gaseous exoplanets
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* The chemical composition in these regions can be calculated using the laws
of thermodynamics, considering this region as a closed system.

* Gibbs free Energy (G): thermodynamic quantity the most appropriate to study
and calculate this chemical equilibrium.

e The Gibbs free Energy isgivenby : G = H—T§
/ [ ™

temperature

enthalpy entropy
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* The chemical composition in these regions can be calculated using the laws
of thermodynamics, considering this region as a closed system.

* Gibbs free Energy (G): thermodynamic quantity the most appropriate to study
and calculate this chemical equilibrium.

e The Gibbs free Energy isgivenby : G = H—T§
/ [ ™

temperature

entropy
Let’s see how it works... enthalpy



Thermodynamic

Consider one reaction occurring in a mixture of gases with constant P and T.

The 2nd law of thermodynamics states that the total entropy of an isolated system can
never decrease over time:

ASy 2 0 with AS,, = AS, + AS,,

mixture of gases
chemical reaction

The variation of enthalpy of the system (AH_, ) corresponds to the heat exchanged during

SYS
the reaction: Op = AH,

: .y . : : QP AI{sys
and this variation of enthalpy is received by the exterior => AS, , = — 7 = — -
AH,,
ASyyy = ——— 2 0=> AH;, — TAS;, SO =>{AG,, <0

The reaction can occur only if the Gibbs Energy of the system decreases

= The equilibrium state will be reached for the minimum of G,.


https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Isolated_system

Thermodynamic

In a system composed of L species, the Gibbs Energy of the system can be expressed as a

L
function of the partial Gibbs Energy (=chemical potential) of each species I: G, = Z WV,
I=1

with y; = g(T, P) + RT In N; and N, the number of moles of species /
The Gibbs Energy of species I is : g(T, P) = h(T) — Ts(T).

Let express hy(T) and s,(T") with the values at Normal conditions of Pressure (P’ = 1.01325 bar)
h/(T) does not depend on P => h(T) = th(T) (at PY)
s,(T") does depend on P => a term depending on pressure must be added:

P
8(T. P) = h(T) = Ts)(T) + RT In —

Finally, the total Gibbs Energy of the system is given by:

G.. = h(T) = TsAT) + RT 1 i+RT1 N, | XN
SyS_Z [ S nPO N IV [
=1




Thermodynamic

In a system composed of L species, the Gibbs Energy of the system can be expressed as a

L
function of the partial Gibbs Energy (=chemical potential) of each species I: G, = Z WV,
I=1

with y; = g(T, P) + RT In N; and N, the number of moles of species /
The Gibbs Energy of species I is : g(T, P) = h(T) — Ts(T).

Let express hy(T) and s,(T") with the values at Normal conditions of Pressure (P’ = 1.01325 bar)
h/(T) does not depend on P => h(T) = th(T) (at PY)
s,(T") does depend on P => a term depending on pressure must be added:

P
8(T. P) = h(T) = Ts)(T) + RT In —

Finally, the total Gibbs Energy of the system is given by:

The equilibrium state will
0 0 P be reached for the
Gyys = Z B(T) = Ts)T) +RT In—5 + RT In N, | X N minimum of Geys

I=1 — how to calculate it ?




NASA coefficients

The thermodynamic properties of species th(T) and SZO(T) can be computed numerically thanks

to NASA po|ynomia|s_ H20 20387H 20 1 G 0300.00 5000.00 1000.00 1
0.02672145E+02 0.03056293E-01-0.08730260E-05 0.12009964E-09-0.06391618E-13

2
-0.02989921E+06 0.06862817E+02 0.03386842E+02 0.03474982E-01-0.06354696E-04 3
0.06968581E-07-0.02506588E-10-0.03020811E+06 0.02590232E+02 B

For each species, two sets of coefficients exist, corresponding to two ranges of temperature. In the
format found in the literature, the first set of coefficients corresponds to the high temperature range
(1000-5000 K), the second set to the low temperature range (300-1000 K)

Originally, the format of these polynomials used 7 coefficients, but the update NASA polynomial
format is using 9 coefficients. However, both format are still regularly used.

7/ -coefficients format :

th(T) . ar T N a3lT2 N a4lT3 N a51T4 N g
RT S 3 4 5 T

st (T a1 a1l a<; 1’

() =ayInT+ ayT + ! + 4 + ! + a4
R 2 3 4

9-coefficients format :

h(T a ar,InT a.T  aT* a.T° a,T* a
(1) _ _ Y + 21 b+ 41 51 6l + 71 + 81
(I)QT T? T 3 , 4 ; 5 . T
s (T) a a as<, T ac, T a-lT

R 272 T 2 3



Equilibrium composition

Reminder: the Gibbs free Energy of the system is :

G. .= 3 hW(T) — Ts(T) + RT 1 i+RT1 N) X N
sys_Z([() S ) nPO n /v, ]
[=1

With NASA coefficients, we are able to calculate each term of this
formula.

For an initial molecular composition (or initial elemental abundances),
the set of V, that permits to have the lower Gy, will correspond to the

thermochemical equilibrium composition.

This composition is found numerically, with a Newton-Raphson method
for instance.

This composition dependson T and P....



Repartition of chemical elements
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chemical elements are 10 |
distributed among the different
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y(H20) decreases when y(CO)
INncreases.



Repartition of chemical elements
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Repartition of chemical elements

10'2 lllllllll

e e — L

e Conversely, when P decreases
transition between CO/CHa4
occurs at lower T.

At 0.007 bar, transition happens
at ~700 K.
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Repartition of chemical elements
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Repartition of chemical elements

* For a given elemental composition, I T
P and T determine the molecular [ — S immmm i e e
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Repartition of chemical elements

* For a given elemental composition, [ I A A
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Repartition of chemical elements

For a given elemental composition,
P and T determine the molecular
composition.

The elemental composition
iInfluences also the molecular
composition (i.e. C/H, O/H, N/H)

An increase of the metallicity lowers
the temperature of transition
between CO / CH4

(same for N2/NHz)

An increase of the % ratio also
slightly increases the temperature of
transition.

At high T and %=1, CO is the main
C- and O-bearing species.
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Reaction quotient

* Thermodynamic is useful but does not give information on the time required to reach

equilibrium. In planetary atmospheres, disequilibrium processes compete with
chemical reactions, so ...




Reaction quotient

* Thermodynamic is useful but does not give information on the time required to reach

equilibrium. In planetary atmospheres, disequilibrium processes compete with
chemical reactions, so & . G

WE NEED YZSU
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Reaction quotient

* |et consider a reversible reaction involving L species of the general form

L L
Z Uiy = Z v y; with v’yand v’’; the stoichiometric coefficients in the forward and
=1 =1

reverse direction respectively.

* At any time ¢, the reaction is characterised by the reaction quotient (Og):
L

Qp(t) = Ha,(t)”l with v, = ;' — v, and ay(t) the activity of species y; at instant ¢
I=1

* The activity of a species corresponds to its « effective concentration » in a mixture.
Dimensionless quantity that can be expressed* as a function of its partial pressure
(@, = p;/ PY), its molecular concentration (a, = n,/NY), or its mixing ratio (¢, = y,/Y") **

*for non-ideal gas, one must multiply p;, n; and y; by the activity coefficient (0O<y,<1)
** P0.NO, and Y0 are the standard values : 1 bar, 1 molecule.cm--3, and 1
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* |et consider a reversible reaction involving L species of the general form
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Z Uiy = Z v y; with v’yand v’’; the stoichiometric coefficients in the forward and
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Dimensionless quantity that can be expressed* as a function of its partial pressure
(@, = p;/ PY), its molecular concentration (a, = n,/NY), or its mixing ratio (¢, = y,/Y") **

*for non-ideal gas, one must multiply p;, n; and y; by the activity coefficient (0O<y,<1)
** P0.NO, and Y0 are the standard values : 1 bar, 1 molecule.cm--3, and 1



Equilibrium constant

* The reaction quotient with the activity expressed in pressure units (Q,) is linked to
thermodynamics values, especially the Gibbs Energy through:

AG =AG’+RTInQ,

* When the reaction reached an equilibrium, and thus the system does not evolve
anymore, Q, is called equilibrium constant and is noted K, and AG=0 =>
AG” = —RT InK,

» We obtain the expression of the equilibrium constant: K, = exp(—AG'/RT)

ASO AHY
that can be also expressed : K, = exp

RT

ASY & sAT) AH° h(T)
Wlth— Z and T ZZDZ T

[=1

= The equilibrium constant of a reaction, K,, can be calculated with NASA
coefficients.



Reaction rate

L L
Still considering our reaction Z vy = Z 797,
=1 =1

Ldlyl 1 dyl
v dt v di
concentration of species y (molecule.cm-3) and v is the reaction rate
(molecule.cm-3.s1)

Conservation of matter imposes: — = v, Where [y] is the

The reaction rate, v, is proportional to the concentration of species. The general
formula postulated by Van't Hoff is v = k(T)H | ;(,]”l’ with k(7T) the rate coefficient.
l

dly /]
dt

The production/loss rates of products/reactants are given by =

The chemical lifetime of a species destroyed by this reaction is %

v
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Rate coefficient

The rate coefficient is expressed with an Arrhenius law, or, more commonly, with

the modified Arrhenius law: k(7") = AT" exp

E

RT

Ea is the activation energy of the reaction.

Endothermic Reaction

A
Activation Energy
energy of products
Energy
3 l 1 absorbed
—
w ------------- L B
Lﬁ Energy
of reactants

Direction of reaction

Energy

Exothermic Reaction

f

Activation
energy

!

Energy
of reactants

Energy
released

Energy

of products

Direction of reaction



Rate coefficient

* Units of k&(T) depends on the type of the reaction:
- Unimolecular: A—-B+C

v =k(T)[A] = KT)in s

- Bimolecular: A+B—C+D
v = k(T)H[A][B] = k(T)in cm3.molecule-1.s-

- Termolecular: A+B+M—-AB+M
v = k(TH[A][B]IM] = k(T) in cmé.molecule-2.s-

* A 3-bodies reaction is complex. It results from the association of 2 molecules:
A+B_AB*
followed by a deexcitation thanks to the collision with M (background gas):
AB*+M_AB+M

* AB* is not stable and will decay spontaneously if there is no collision with M:
AB*_A+B



Three-bodies reactions

e The probability that AB* meets a M body is large at high P, because molecules are close
to each other. In this case, the reaction rate does not depend on [M] and the reaction
can be considered as bimolecular: A+B—AB

= In the high-pressure limit: v, = k_[A][B]

e At low-pressure, the reaction rate is limited by the density of M.
= In the low-pressure limit: v, = ky[A][B][M]

e [M]is the sum of the density of each molecules

(+ M)
(eventually weighted by their efficiencies) i CHs J;CHB — CoHe
high P
: 10_11-:
v
&
S
M 10—12_:
ko(800 K)[M]
low P — K»(800 K)
10—13

10~° 16‘3 16‘1 1(1)l 103
Pressure (bar)



Three-bodies reactions

The probability that AB* meets a M body is large at high P, because molecules are close
to each other. In this case, the reaction rate does not depend on [M] and the reaction
can be considered as bimolecular: A+B—AB

= In the high-pressure limit: v, = k_[A][B]

At low-pressure, the reaction rate is limited by the density of M.
= In the low-pressure limit: v, = ky[A][B][M]

[M] is the sum of the density of each molecules (+ M)
(eventually weighted by their efficiencies) 1o CHs J;CHB — CaHe
The transition region between the low- and nigh
high-pressure regimes is called « fall-off » SR
region. k(T) is given by : "
P m
k(T) =k — | F 5
1+ Pr 7 107124
k(M) ! —— ko(800 K)[M]
. 0 - — k(800 K)
with the reduced pressure P, = P | /lowP —— k(800 K)
00 10-13

10~° 16‘3 16‘1 1(1)1 103
Pressure (bar)



Three-bodies reactions

The notions of « low »
and « high » pressure
are temperature
dependent !

(+ M)
10-10 CH3 + CH3 — C2H6
5 / —
" high P
: 10—11 .
lm
I
= — k(800 K)[M]
S — k(800 K)
v 10_12_E —— k(800 K)
...... Ko(1500 K)[M]
...... k(1500 K)
...... k(1500 K)
10713 T ' '
10-5 1073 107" 10° 1o

Pressure (bar)



Fall-off region

kK(T) =k < Fr F
(1) = ke 1+P,,>

e Several formulations for F exist:

- Lindemann: F=I

c=—04-0.67%logy(F..,,)
with N =0.75-1.27 x log,((F.,,,)
d=0.14

loglO(F cent)

1 + [ logIO(Pr) +C ]2
N — d(logo(P,) + ¢)

T T Tk
and F_.,,, = (1 —a)exp e + aexp T +exp | — =

1
1+ (logl() Pr)2

—b -T1*
-SRI: F=d aexp7+exp— T¢ with X =

C



Three-bodies reactions

(+ M)
—

CHs + CHs C>Heg

Z

* The different expressions for F allow a
better description of the fall-off region

10—11 .

|—II
* The more common expressionusedto ™
study planetary atmospheres is « Troe » E
~ o — Ko(800 K)[M]
— K% (800 K)
—— k(800 K) Lindemann
k(800 K) TROE

10_17 T T T T T
1078 1076 1074 1072 10° 107

Pressure (bar)

* A new method is appearing and consists in a logarithmic interpolation of rates
coefficients specified at individual pressures.

The rate k at pressure P (with P;<P<P») is given by :

log P — log P,
log k(P) = log k(P;) + (log k(P,) — log k(P,))
log P, — log P,




Reverse and forward rates

The reaction Z vy = Z v, y; can occur in both directions (forward and reverse)
=1 =1

The associated rate coefficients are k(T) and k(7).

The reaction rates are respectively v, = kf(T)H [x/]¥ and v, = k,,(T)H YA
z z

k
When the reaction is at equilibrium vy= v, and thus ;f = H Ll”
r l

One can recognise the equilibrium constant, with the activity expressed in term of
molecular concentration. Expressed in term of pressure, we obtain:

Z Uy Z Vi
k po \ < k PO\~ knowi ly, ki
Jo(=) k = ZL=(-=) exp-acurr) T rOWngkon LIS
k k kgT calculated with NASA

r r
coefficients .... !
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HD 189733b

Photolyses -

Photodissociations occur in upper
atmosphere of irradiated exoplanets

Pressure (mbar)
|_|
o
o

After absorption of a photon, molecule A is
excited: A+hv — A* Lot |
\\\\5\|420

10-° 108 10~/ 10-¢ 10> 104 10-3 10-2 10! 10°
Mole fraction

Depending on the energy of the absorbed photon, molecule A* can dissociate
and photodissociation products can vary.

Molecule A has N routes to photodissociate. At each wavelength, the probability
that A dissociates through the route k is given by the branching ratio, gi«(4),

N
verifying :Z q, (1) = 1.

k=1
Photodissociation route branching ratio [A range]
For instance: CHs4+hv —CHs+H 1.0 [6-151] ) 0.42 [121 .6]
Gans et al. 2011 —1CH2+H> 0.48 [121.6]

_3CHa2+H+H 0.03 [121.6]
_.CH+H+H 0.07 [121.6]



Photodissociation rate

For these reactions, the rate coefficient is called the photodissociation rate

and is noted J.
absorption cross section of species i (cm?)

n /
For a molecule /, dissociating through the route «, ]ik(Z) = J al.“bs(/l)F(/l, 2)q,(A)dA
M

Actinic flux (cm-=2.s.nm-")

The total photodissociation rate of the molecule i is the sum of the
N

photodissociation rate in each route: J.(z) = Z Jl-k(z)
k=1

Absorption cross sections and branching ratios are very important data to
calculate the photodissociation rates. In reality these data depends on
temperature, but their thermal dependency is badly quantified....

Very few experimental measurements and not trivial to model theoretically
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Thermo-photochemical model

e A thermo-photochemical model aims at reproducing all physical and chemical
processes occurring in an atmosphere in order to study the evolution of its chemical
compounds.

e These models exist mainly in 1D, but some 2D, and 3D models have been developed.

e The atmosphere is represented by a column divided in several layers

e Each of these layers contains molecules that
- photodissociate with UV radiation
. Z - react with each other
: - move from a layer to another thanks to mixing

e For each species and in each level, the thermo-photochemical
model resolves the continuity equation, which describes the

temporal evolution of the density of a species i at the altitude z
an( Z) P;(z) the production rate (cm™3s71)
l = Pi(Z) — Ll-(Z) — diV((I)i(Z)?Z}) - L(z) the loss rate (cm™3s7h)
wi
n/(z) the density (cm™?)
®,(z) the flux (cm™2s™!)

ot

= | arge system of coupled differential equations



Thermo-photochemical model

e A thermo-photochemical model aims at reproducing all physical and chemical
processes occurring in an atmosphere in order to study the evolution of its chemical
compounds.

e These models exist mainly in 1D, but some 2D, and 3D models have been developed.

e The atmosphere is represented by a column divided in several layers

e Each of these layers contains molecules that

(AR - photodissociate with UV radiation
- a4 - react with each other
: : - move from a layer to another thanks to mixing
e For each species and in each level, the thermo-photochemical
o @ model resolves the continuity equation, which describes the
_, temporal evolution of the density of a species i at the altitude z
\ ’ on.(z) P(z) the production rate (cm™s™!)
e : - Pi(Z) — Li(Z) — div((I)i(Z)?Z)) . L(z) the loss rate (cm~3s7h
® o ot with n/(z) the density (cm™)
3 ®,(z) the flux (cm™2s™!)
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Continuity equation

on,(z)

—— = P(2) = Li(2) - div(®(2)e;)

* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme, given as input.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 on(z) N 1 N (I+a)dT@) | K ) 1 0y(2)
n(z) 0z H() I(z) dz Vi2) oz

D(z) = — n(2)Dy(2)

with D,(z) the molecular diffusion coefficient (cm?s™1), K(z) the eddy diffusion coefficient (cm?s™h),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion
- a chemical scheme
- a thermal profile
- a stellar flux



Continuity equation

()nl-(Z)
ot

= P(2) — L(z) — div(®(2)e,)

* Production (P;) and loss (L;) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®,) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 ong(z) N 1 . (1+a) dT(2) i KG) 1 0dy(2)
@ x| H@ 1@ dz o) 02

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™1), K(z) the eddy diffusion coefficient (cm?s™1),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion = molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Molecular diffusion

e |n planetary atmospheres, made of a major molecule, minor molecules undergo
molecular diffusion when their density depart from hydrostatic equilibrium.

* The induced flux is proportional to the molecular diffusion coefficient D; of the minor
species i in the major molecule.

e In atmospheres in which the background is formed by 2 compounds A and B (like hot
Jupiters atmospheres, made mainly of He and Hy), the minor species i diffuses in a
binary mixing of gases with a coefficient D;,;. given by:

—1

0.00143717°
D. . = y—A+y—B with D,y =

e Dy D PMMAI(ED]E + (2,)§°]

with P the pressure (bar), M;x the reduced mass (kg), and X, the sum of volumes of atomic
diffusion of each atom of species /i and X



Eddy diffusion

The Eddy diffusion gathers all processes that tend to mix the atmosphere, wether at
Micro or macroscopic scale.

For exoplanets, there is a very large uncertainty for this parameter.
It can be set constant with altitude. In this case, K(z) is typically between 107-1012 cm?2s-1

It can be estimated from GCM, using tracers (Parmentier et al. 2013, Charnay et al. 2015)

warm Neptune GJ 1214b (Charnay et al. 2015)

1074 fxsolar
: 10xsolar _ —04

_ 3 —ILOC())xsoIar KZZ(P) — KZZO X Pbar
& 10 T 2 ;
0 : : :
o [ Kz fromg | K, =7x%x10* m*™! for 1 X solar metallicity
§ 10-2_GCM A
o ¥ K..,=2.8x%10°> m?~! for 10 x solar metallicity
e fit ; 0

10 ' ' K., =3x10° m?*~! for 100 X solar metallicity

Y- 1 K,y=3x10*m?! for pure water case

10’ 10° 10° 10* 10° 10°



Continuity equation
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* Production (P;) and loss (L;) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®,) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 ong(z) N 1 . (1+a) dT(2) i KG) 1 0dy(2)
@ x| H@ 1@ dz o) 02

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™1), K(z) the eddy diffusion coefficient (cm?s™1),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion = molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Continuity equation

dnl-(Z)
ot

= P(2) — L(z) — div(®(2)e,)

* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions
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with D,(z) the molecular diffusion coefficient (cm?s™), K(z) the eddy diffusion coefficient (cm?s™),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion => molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Chemical scheme

e Jo calculate the production and loss rates, the thermo-photochemical model needs a
list of species and reactions, with the corresponding coefficients (Arrhenius, TROE,...)
—> a chemical scheme/network

e The first chemical scheme used to study hot Jupiters atmosphere was one developed
for Jupiter’s atmosphere (applied to HD 209458b by Liang et al. 2003, 2004).
—> scheme made for low temperature atmospheres
—> |ack of endothermic reactions that cannot be neglected at high temperature
= thermochemical equilibrium was not reproduce in the deep atmosphere

e For System solar planets (i.e. cold) endothermic reactions are not included because
very slow. Lower boundaries conditions are set to fix mixing ratios.

Endothermic Reaction Exothermic Reaction

A A T

Activation
energy

!

Energy Energy
absorbed of reactants

Activation
energy

Energy
of products

Energy
released
Energy Energy

of reactants of products

Energy
Energy

Direction of reaction Direction of reaction



Chemical scheme

e In hot exoplanet atmospheres, no need of boundaries conditions if thermochemical
equilibrium is reproduced

e All reactions must be reversed thanks to the equilibrium constant (calculated with

U
kf PO Zl [
NASA coefficients): — = | — Kp
ko \ kT
| | | ! I | -
3.0x107 [ Nominal ]
- Thermodynamic Equilibrium ---------- _
2.5%x1078 :— _:
2,0><1O-8 :_ .................................................................................................................................................. _:
2 [ NH3 ]
S 5x10°—  conditions: thermochemical equilibrium 7
3 - T=1800K i
= ~ P=0.1bar i
1.0x10°8— _
5.0x107° :— _:
oL | , | . | . l . i
10° 102 104 10° 10°

Integration Time (s)



Chemical scheme

* To create the chemical scheme, no real rules:
- usually/historically, made manually adding reactions found in literature to each others
- developed from Jupiter's or Earth’s model (depending on kind of planets studied)
(Moses et al. 2011, Kopparapu et al. 2012, Hu et al. 2012,...)
— uncertainty on the completeness of these schemes....

- other approach: use chemical schemes validated experimentally in combustion field
(Venot et al. 2012, 2015, 2020)

* Depending on the scheme used, differences in the predicted abundances can occur
—> guenching does not occur at the same level

(a) (b) Moses et al. 2014
L4 BRI BRI B RLLL I BRI B LI B R L I R L I B L B B R AR LLL B LR RLLLL R L B L I REL R L | N AL IR RLL R R R B BRI IR BRI
Moses et al. [67] 3
Venot ef al. [71] —%
L -_-_-Z:j\\\\l\ — - E
L | E
2 . ‘ M vl oM :
I t | . ‘ _é
N ' . E
) | ENEREETIT R AR T EENERTTTT BRI AT BRI BRI BN R R B RTRIT| AT RTEIT | BERERE ARTT BERARNAT) ! R ERR R ERERRRTTT RN R R IR TETT BN RTTIT EEETRANTT| EENERETTTT B AR T\ m..l conl .....—%

10713 101 107° 1077 107> 1073 10713 107! 1079 1077 10~ 103

methane (CH,) mole fraction ammonia (NH,) mole fraction



Chemical scheme

* To create the chemical scheme, no real rules:
- usually/historically, made manually adding reactions found in literature to each others
- developed from Jupiter's or Earth’s model (depending on kind of planets studied)
(Moses et al. 2011, Kopparapu et al. 2012, Hu et al. 2012,...)
— uncertainty on the completeness of these schemes....

- other approach: use chemical schemes validated experimentally in combustion field
(Venot et al. 20712, 2015)

* Depending on the scheme used, differences in the predicted abundances can occur
—> guenching does not occur at the same level

 For models focusing on the deep/middle atmosphere (P=10-8 bar), only neutral species
need to be included in the chemical scheme

e Models for the upper atmosphere (thermosphere) need to include ions and electrons
(Yelle 2004, Garcia Munoz 2007, Koskinen et al. 2013) and some models couple
neutral and ions chemistry (Lavvas et al. 2014, Rimmer et al. 2014, 2016)



Continuity equation

dnl-(Z)
ot

= P(2) — L(z) — div(®(2)e,)

* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 dn(z) . 1 . (1 +a) dT(z) i KG) 1 0dy(2)
n(z) 0z H(2) I(z) dz Vi2) oz

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™), K(z) the eddy diffusion coefficient (cm?s™),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion => molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux
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* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 dn(z) . 1 . (1 +a) dT(z) i KG) 1 0dy(2)
n(z) 0z H(2) I(z) dz Vi2) oz

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™), K(z) the eddy diffusion coefficient (cm?s™),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion => molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Thermal profile

* |n most kinetic models, the thermal profile is a fix input parameter

e The PT profile comes from theoretical models (GCMs or 1D/2D radiative-convective
models) or is derived from observations (with a retrieval code)

e Temperature between 500 and 3000 K for hot gaseous giant planets

10>

e Temperature inversion are possible

10—3_

. . . HD 189733b
Case of HD 209458b: first, thermal inversion was

invoked to explain observations by Spitzer (e.g.
Knutson+2008, Madhusudhan & Seager 2009,
Line+2014) but Diamond-Lowe+2014 analysed the
same data with a new method and found that .
thermal inversion was no longer necessary. 07 GJ 436b
Then the analyse of high-precision HST data
(Line+2016) confirm that no thermal inversion exist

In this planet... GJ 1214b
107_

10—1_

101 4
HD 209458b

Pressure (mbar)

500 1000 1500 2000 2500
Temperature (Kelvin)



Pressure [bar]|

Thermal profile

e The limitation of using fix profiles is that the change of chemical composition (and
thus opacity of the atmosphere) is not taken into account leading to a non-consistent
result.

e Up to now, only one fully-consistent kinetic model has been developed (Drummond
et al. 2016)

e 11—
Wi Tu
e Impact on the temperature (up to 100 K) 0] duEl — o |
. P — NH3
and the chemical composition o — W
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o a 100}
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Continuity equation

dnl-(Z)
ot

= P(2) — L(z) — div(®(2)e,)

* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 dn(z) . 1 . (1 +a) dT(z) i KG) 1 0dy(2)
n(z) 0z H(2) I(z) dz Vi2) oz

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™), K(z) the eddy diffusion coefficient (cm?s™),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion => molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Continuity equation

dnl-(Z)
ot

= P(2) — L(z) — div(®(2)e,)

* Production (P;) and loss (L,) rates are calculated with formula of chemical kinetics (seen
previously) and thanks to the chemical scheme.

* The flux (®)) is calculated with the diffusion equation, taking into account molecular and
eddy diffusions

1 dn(z) . 1 . (1 +a) dT(z) i KG) 1 0dy(2)
n(z) 0z H(2) I(z) dz Vi2) oz

®(z) = = n(2)D(2)

with D,(z) the molecular diffusion coefficient (cm?s™), K(z) the eddy diffusion coefficient (cm?s™),

a;(z) the thermal diffusion coefficient, and H,(z) the scale height (cm)

* |ngredients necessary to run such model are:
- information/data for diffusion => molecular and eddy
- a chemical scheme
- a thermal profile
- a stellar flux



Stellar flux

In thermo-photochemical model, the UV-vis stellar flux is needed to calculate
photodissociation rates

Unlike the Sun, the stellar flux of other stars in this range is rarely known.

Need to use proxy for which observations are available, eventually combined to
theoretical models (e.g. X-exoplanets, Phoenix, Kurucz)
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Some key results...

e |n the deep atmosphere CO converted to CH4 through the net reaction:
CO + 3H2z — CH4 + H20 (detailed pathways vary depending on chemical schemes)

e The CO/CHgs ratio is :
- strongly modified by mixing compared to what is predicted by equilibrium
- very dependent on effective temperature of the planet
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- very dependent on Eddy diffusion coefficient Moses et al. 2016
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Pressure (bar)
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in hot atmospheres (Tz 800K) molecular abundances are very dependent on the

Carbon-Oxygen ratio
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Carbon-Oxygen ratio

ne differences of composition are visible on spectra
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Towards 3D kinetic models
- pseudo 2D model

* Results presented are found with 1D models, taking into account vertical mixing
only, but horizontal mixing has importance (i.e. Agundez+ 2014; Venot+ 2020)

WASP43b Venot et al. 2020
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* With pseudo 2D model, we find that at equator, homogenisation of abundances,
close to that of the dayside, or in-between day/night abundances, as for CH4



Towards 3D kinetic models
- reduced chemical scheme

But what about other latitudes ?

Need a real 3D kinetic model, but the major issue is the huge computational time
required by a GCM included a set of 2000 reactions...

solution: to use a reduced chemical scheme (less complete but enough to study
major species - Venot et al. 2019, 2020)

methodology:
1. identify + eliminate unimportant species and associated reactions

2. sensitivity analysis to eliminate less important reactions
(step 2 is very time consuming so step 1 is required)

Venot+2012 Venot+2019

1920 reactions, 105 species 362 reactions, 30 species

3. compare the results obtained with full and reduced schemes



Towards 3D kinetic models
- reduced chemical scheme

* Temporal evolution in OD in various P and T:
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Towards 3D kinetic models
- reduced chemical

e Abundancesin 1D :

scheme
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* Uncertainty propagation in 1D :

Towards 3D kinetic models
- reduced chemical scheme

A two-parameters temperature-dependent uncertainty factor associated to each rate
constant

F(T) = F(300K) x exp |g(
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Towards 3D kinetic models
- reduced chemical scheme

* Uncertainty propagation in 1D :

1000 Monte Carlo runs with the full scheme:

vertical abundances profiles - distribution of abundances at 1 mbar
CO - GJI436b quel -P = .1 mbar
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given the uncertainty on the vertical abundances with the full scheme, the reduced
scheme is really close to nominal values

Venot et al. 2019
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- homogenisation of
abundances for CHs
and HCN

- for CO2, abundance at
the nightside terminator
decreases but there is
still a significant
horizontal gradient
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Towards 3D kinetic models

e The effects of 3D kinetics should be visible on the observations thanks to the
spectral signature of CH4, HCN and COz>
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