Outline

• Introduction - Structure of exoplanet atmospheres

• Thermodynamics - Thermochemical equilibrium

• Chemical kinetics

• Photochemistry

• Tools: 1D kinetic models - ingredients + key results
Outline

• Introduction - Structure of exoplanet atmospheres

• Thermodynamics - Thermochemical equilibrium

• Chemical kinetics

• Photochemistry

• Tools: 1D kinetic models - ingredients + key results
Diversity of planetary worlds

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Diversity of planetary worlds

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Some scientific questions

• What is the history of these planets?

• How did they form?

➡ What is the chemical composition of their atmosphere?

➡ What are the elemental ratios?

➡ Are they the same than their host star? or are they enriched?

➡ Determine one or several scenarios of planetary formation, common with the Solar System (if possible)
Diversity of planetary worlds

Mass (M_{Earth})

Semi-major axis (AU)

stellar type:
- O
- B
- A
- F
- G
- K
- M

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Diversity of planetary worlds

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Diversity of planetary worlds

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Diversity of planetary worlds

- **Mass (M_{\text{Earth}})**
- **Semi-major axis (AU)**

Source: exoplanet.eu (August 31, 2023)

- **5506 exoplanets + 8 solar system planets**

- **Warm gaseous giant exoplanets**

Leaked Gases

- **H_2O+CH_4 in HD189733b**
 - Swain+ 2008

- **H_2O+CH_4+CO_2 in HD209458b**
 - Swain+ 2009

Additional Notes

- **Solar System:**

Graphs and Data:

- **Absorption (%):**
- **Wavelength (\mu m):**
- **Flux Planet/Flux Star 10^{-3}:**
- **Wavelength (\mu m):**
Diversity of planetary worlds

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Diversity of planetary worlds

Mass (M\textsubscript{Earth})

Semi-major axis (AU)

warm gaseous giant exoplanets

TRANSIT

Solar System

source: exoplanet.eu (August 31, 2023)

5506 exoplanets + 8 solar system planets

young and warm gaseous giant exoplanets

DIRECT IMAGING

H\textsubscript{2}O+CO in \(\beta\) Pictoris b

Hoeijmakers+ 2018

H\textsubscript{2}O+CO in \(\beta\) Pictoris b

Hoeijmakers+ 2018

H\textsubscript{2}O+CO in HR8799c

Konopacky+ 2013

H\textsubscript{2}O+CO+CH\textsubscript{4} in HR8799c

Konopacky+ 2013

exoplanets + 8 solar system planets
Diversity of planetary worlds

Common characteristic: $500 \, K < T_{\text{eq}} < 3000 \, K$

source: exoplanet.eu (august, 31 2023)

5506 exoplanets + 8 solar system planets
Out of equilibrium processes

Thermochemical Equilibrium: depends only of P, T, elementary abundances
Out of equilibrium processes

Thermochemical Equilibrium: depends only of P, T, elementary abundances

- intense stellar irradiation
- high temperatures
- strong temperature gradient between day and nightside

- photodissociations
- vigorous dynamic:
 - horizontale circulation (winds)
 - vertical mixing (convection, turbulence)
Out of equilibrium processes

Thermochemical Equilibrium: depends only of P, T, elementary abundances

- intense stellar irradiation
 + high temperatures
 + strong temperature gradient between day and nightside

- photodissociations
- vigorous dynamic:
 horizontale circulation (winds)
 vertical mixing (convection, turbulence)
Out of equilibrium processes

Thermochemical Equilibrium: depends only of P, T, elementary abundances

intense stellar irradiation
+ high temperatures
+ strong temperature gradient between day and nightside

\[\text{FLUX}\]

\(\text{\{}\)
\begin{align*}
\text{- photodissociations} \\
\text{- vigorous dynamic:} \\
\text{horizontale circulation (winds)} \\
\text{vertical mixing (convection, turbulence)}
\end{align*}
\(\text{\}}\)

To interpret observations + to understand these atmospheres

\(\Rightarrow\) Need kinetic models!
Structure of giant gaseous exoplanets

- From their small density, we know that their atmospheres are dominated by Hydrogen (H$_2$ or H) and Helium.
Structure of giant gaseous exoplanets

- From their small density, we know that their atmospheres are dominated by Hydrogen (H$_2$ or H) and Helium.

- **Thermo equilibrium**: temperature is very high so kinetics is fast enough to reproduce thermo equilibrium.
Structure of giant gaseous exoplanets

- From their small density, we know that their atmospheres are dominated by Hydrogen (H$_2$ or H) and Helium.

- **Quenching**: abundances depart from thermo equilibrium. They are frozen when $\tau_{\text{chemical}} > \tau_{\text{dynamical}}$.

- **Thermo equilibrium**: temperature is very high so kinetics is fast enough to reproduce thermo equilibrium.
Structure of giant gaseous exoplanets

- From their small density, we know that their atmospheres are dominated by Hydrogen (H₂ or H) and Helium.

- Quenching: abundances depart from thermo equilibrium. They are frozen when \(\tau_{chemical} > \tau_{dynamical} \). This level depends on \(\tau_{chemical} \) so is proper to each species.

- Thermo equilibrium: temperature is very high so kinetics is fast enough to reproduce thermo equilibrium.
Structure of giant gaseous exoplanets

- From their small density, we know that their atmospheres are dominated by Hydrogen (H$_2$ or H) and Helium.

- **Photodissociations**: UV irradiation from the star destroys or produces molecules.

- **Quenching**: abundances depart from thermo equilibrium. They are frozen when $\tau_{\text{chemical}} > \tau_{\text{dynamical}}$.
 This level depends on τ_{chemical} so is proper to each species.

- **Thermo equilibrium**: temperature is very high so kinetics is fast enough to reproduce thermo equilibrium.
Structure of giant gaseous exoplanets

• From their small density, we know that their atmospheres are dominated by Hydrogen (H₂ or H) and Helium.

• **Photodissociations**: UV irradiation from the star destroys or produces molecules. Effect can be seen as deep as 10/100 mbar.

• **Quenching**: abundances depart from thermo equilibrium. They are frozen when
\[\tau_{\text{chemical}} > \tau_{\text{dynamical}} \]
This level depends on \(\tau_{\text{chemical}} \) so is proper to each species.

• **Thermo equilibrium**: temperature is very high so kinetics is fast enough to reproduce thermo equilibrium.
Structure of giant gaseous exoplanets

Madhusudhan et al. 2016
Structure of giant gaseous exoplanets

Madhusudhan et al. 2016
Structure of giant gaseous exoplanets

Madhusudhan et al. 2016
Outline

• Introduction - Structure of exoplanet atmospheres

• Thermodynamics - Thermochemical equilibrium

• Chemical kinetics

• Photochemistry

• Tools: 1D kinetic models - ingredients + key results
Thermodynamic

- In deep region of hot/warm gaseous giant exoplanets atmospheres: high P and T
 → chemical composition at thermochemical equilibrium.

- The chemical composition in these regions can be calculated using the laws of thermodynamics, considering this region as a closed system.

- Gibbs free Energy (G): thermodynamic quantity the most appropriate to study and calculate this chemical equilibrium.

- The Gibbs free Energy is given by: $G = H - TS$
Thermodynamic

• In deep region of hot/warm gaseous giant exoplanets atmospheres: high P and T → chemical composition at thermochemical equilibrium.

• The chemical composition in these regions can be calculated using the laws of thermodynamics, considering this region as a closed system.

• Gibbs free Energy (G): thermodynamic quantity the most appropriate to study and calculate this chemical equilibrium.

• The Gibbs free Energy is given by: \[G = H - TS \]

Let’s see how it works...
Thermodynamic

- Consider one reaction occurring in a mixture of gases with constant P and T.

- The 2nd law of thermodynamics states that the total entropy of an isolated system can never decrease over time:

 $\Delta S_{tot} \geq 0$ with $\Delta S_{tot} = \Delta S_{sys} + \Delta S_{ext}$

- The variation of enthalpy of the system (ΔH_{sys}) corresponds to the heat exchanged during the reaction: $Q_P = \Delta H_{sys}$

 and this variation of enthalpy is received by the exterior $\Rightarrow \Delta S_{ext} = - \frac{Q_P}{T} = - \frac{\Delta H_{sys}}{T}$

- $\Delta S_{sys} - \frac{\Delta H_{sys}}{T} \geq 0 \Rightarrow \Delta H_{sys} - T\Delta S_{sys} \leq 0 \Rightarrow \Delta G_{sys} \leq 0$

- The reaction can occur only if the Gibbs Energy of the system decreases

 \Rightarrow The equilibrium state will be reached for the minimum of G_{sys}.
Thermodynamic

• In a system composed of L species, the Gibbs Energy of the system can be expressed as a function of the partial Gibbs Energy (=chemical potential) of each species l:

 $$G_{sys} = \sum_{l=1}^{L} \mu_l N_l$$

 with $\mu_l = g_l(T, P) + RT \ln N_l$ and N_l the number of moles of species l

• The Gibbs Energy of species l is: $g_l(T, P) = h_l(T) - T s_l(T)$.

• Let express $h_l(T)$ and $s_l(T)$ with the values at Normal conditions of Pressure ($P^0 = 1.01325$ bar)

 $h_l(T)$ does not depend on P => $h_l(T) = h_l^0(T)$ (at P^0)

 $s_l(T)$ does depend on P => a term depending on pressure must be added:

 $$g_l(T, P) = h_l^0(T) - T s_l^0(T) + RT \ln \frac{P}{P^0}$$

• Finally, the total Gibbs Energy of the system is given by:

 $$G_{sys} = \sum_{l=1}^{L} \left(h_l^0(T) - T s_l^0(T) + RT \ln \frac{P}{P^0} + RT \ln N_l \right) \times N_l$$
Thermodynamic

• In a system composed of \(L \) species, the Gibbs Energy of the system can be expressed as a function of the partial Gibbs Energy (=chemical potential) of each species \(l \):

\[
G_{sys} = \sum_{l=1}^{L} \mu_l N_l
\]

with \(\mu_l = g_l(T, P) + RT \ln N_l \) and \(N_l \) the number of moles of species \(l \).

• The Gibbs Energy of species \(l \) is:

\[
g_l(T, P) = h_l(T) - Ts_l(T).
\]

• Let express \(h_l(T) \) and \(s_l(T) \) with the values at Normal conditions of Pressure (\(P^0 = 1.01325 \) bar)

\(h_l(T) \) does not depend on \(P \) \(\Rightarrow \) \(h_l(T) = h_l^0(T) \) (at \(P^0 \))

\(s_l(T) \) does depend on \(P \) \(\Rightarrow \) a term depending on pressure must be added:

\[
g_l(T, P) = h_l^0(T) - Ts_l^0(T) + RT \ln \frac{P}{P^0}
\]

• Finally, the total Gibbs Energy of the system is given by:

\[
G_{sys} = \sum_{l=1}^{L} \left(h_l^0(T) - Ts_l^0(T) + RT \ln \frac{P}{P^0} + RT \ln N_l \right) \times N_l
\]

The equilibrium state will be reached for the minimum of \(G_{sys} \)

→ how to calculate it?
NASA coefficients

- The thermodynamic properties of species $h_l^0(T)$ and $s_l^0(T)$ can be computed numerically thanks to NASA polynomials.

- For each species, two sets of coefficients exist, corresponding to two ranges of temperature. In the format found in the literature, the first set of coefficients corresponds to the high temperature range (1000-5000 K), the second set to the low temperature range (300-1000 K).

- Originally, the format of these polynomials used 7 coefficients, but the update NASA polynomial format is using 9 coefficients. However, both format are still regularly used.

- **7-coefficients format**:

 $\frac{h_l^0(T)}{RT} = a_{1l} + \frac{a_{2l}T}{2} + \frac{a_{3l}T^2}{3} + \frac{a_{4l}T^3}{4} + \frac{a_{5l}T^4}{5} + \frac{a_{6l}}{T}$

 $\frac{s_l^0(T)}{R} = a_{1l} \ln T + a_{2l}T + \frac{a_{3l}T^2}{2} + \frac{a_{4l}T^3}{3} + \frac{a_{5l}T^4}{4} + a_{7l}$

- **9-coefficients format**:

 $\frac{h_l^0(T)}{RT} = - \frac{a_{1l}}{T^2} + \frac{a_{2l} \ln T}{T} + a_{3l} + \frac{a_{4l}T}{2} + \frac{a_{5l}T^2}{3} + \frac{a_{6l}T^3}{4} + \frac{a_{7l}T^4}{5} + \frac{a_{8l}}{T}$

 $\frac{s_l^0(T)}{R} = - \frac{a_{1l}}{2T^2} - \frac{a_{2l}}{T} + a_{3l} \ln T + a_{4l}T + \frac{a_{5l}T^2}{2} + \frac{a_{6l}T^3}{3} + \frac{a_{7l}T^4}{4} + a_{9l}$
Equilibrium composition

• Reminder: the Gibbs free Energy of the system is:

\[G_{\text{sys}} = \sum_{l=1}^{L} (h_l^0(T) - T \cdot s_l^0(T) + RT \ln \frac{P}{P_0} + RT \ln N_l) \times N_l \]

• With NASA coefficients, we are able to calculate each term of this formula.

• For an initial molecular composition (or initial elemental abundances), the set of \(N_l \) that permits to have the lower \(G_{\text{sys}} \) will correspond to the thermochemical equilibrium composition.

• This composition is found numerically, with a Newton-Raphson method for instance.

• This composition depends on T and P....
We can determine how the chemical elements are distributed among the different species as a function of T:

- For solar elemental abundances (% = 0.46):
 - At low T, Carbon is mainly under the form of CH$_4$.
 - At high T, CO is the main C-bearing species. Transition occurs about 1100 K.

- H$_2$O is the main O-bearing species (up to 3000 K), but y(H$_2$O) decreases when y(CO) increases.
Repartition of chemical elements

- We can also see that P has an influence:

- At P = 100 bar, transition between CO/CH₄ occurs at higher T than at 1 bar: ~1800 K.
Repartition of chemical elements

• Conversely, when P decreases transition between CO/CH₄ occurs at lower T. At 0.001 bar, transition happens at ~700 K.

• CO becomes more abundant than H₂O about 2500K.

• We notice the increase of molecular oxygen, which becomes the reservoir of oxygen after 2900 K.
Repartition of chemical elements

- The same behaviour is observed for Nitrogen species, NH$_3$ being the N-bearing species at low T, N$_2$ at high T.
- Temperature of transition increases together with P.
Repertion of chemical elements

- For a given elemental composition, P and T determine the molecular composition.
- The elemental composition influences also the molecular composition (i.e. C/H, O/H, N/H)

For a given temperature, the pressure and the composition determine the molecular composition.
Repartition of chemical elements

- For a given elemental composition, P and T determine the molecular composition.
- The elemental composition influences also the molecular composition (i.e. C/H, O/H, N/H)
- An increase of the metallicity lowers the temperature of transition between CO / CH_4 (same for N_2/NH_3)
Repartition of chemical elements

- For a given elemental composition, P and T determine the molecular composition.

- The elemental composition influences also the molecular composition (i.e. C/H, O/H, N/H)

- An increase of the metallicity lowers the temperature of transition between CO / CH\textsubscript{4} (same for N\textsubscript{2}/NH\textsubscript{3})

- An increase of the % ratio also slightly increases the temperature of transition.

- At high T and %\textsubscript{=}1, CO is the main C- and O-bearing species.
Reaction quotient

- Thermodynamic is useful but does not give information on the time required to reach equilibrium. In planetary atmospheres, disequilibrium processes compete with chemical reactions, so …
Reaction quotient

- Thermodynamic is useful but does not give information on the time required to reach equilibrium. In planetary atmospheres, disequilibrium processes compete with chemical reactions, so...
• Introduction - Structure of exoplanet atmospheres

• Thermodynamics - Thermochemical equilibrium

• Chemical kinetics

• Photochemistry

• Tools: 1D kinetic models - ingredients + key results
Reaction quotient

- Let consider a reversible reaction involving \(L \) species of the general form
 \[\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l \] with \(\nu'_l \) and \(\nu''_l \) the stoichiometric coefficients in the forward and reverse direction respectively.

- At any time \(t \), the reaction is characterised by the reaction quotient (\(Q_R \)):
 \[Q_R(t) = \prod_{l=1}^{L} a_l(t)^{\nu} \] with \(\nu = \nu''_l - \nu'_l \) and \(a_l(t) \) the activity of species \(\chi_l \) at instant \(t \).

- The activity of a species corresponds to its « effective concentration » in a mixture. Dimensionless quantity that can be expressed* as a function of its partial pressure \((a_l = p_l/P^0) \), its molecular concentration \((a_l = n_l/N^0) \), or its mixing ratio \((a_l = y_l/Y^0) \) **

*for non-ideal gas, one must multiply \(p_l, n_l \) and \(y_l \) by the activity coefficient \((0 \leq \gamma_l \leq 1)\)
** \(P^0, N^0, \) and \(Y^0 \) are the standard values : 1 bar, 1 molecule.cm\(^{-3}\), and 1
Reaction quotient

• Let consider a reversible reaction involving L species of the general form

$$\sum_{l=1}^{L} \nu'_{l} \chi_{l} = \sum_{l=1}^{L} \nu''_{l} \chi_{l}$$

with ν'_{l} and ν''_{l} the stoichiometric coefficients in the forward and reverse direction respectively.

ex: $A+B=C+2D$

• At any time t, the reaction is characterised by the reaction quotient (Q_R):

$$Q_R(t) = \prod_{l=1}^{L} a_l(t)^{\nu_l}$$

with $\nu_l = \nu''_{l} - \nu'_{l}$ and $a_l(t)$ the activity of species χ_{l} at instant t

• The activity of a species corresponds to its «effective concentration» in a mixture. Dimensionless quantity that can be expressed* as a function of its partial pressure ($a_l = p_l/P_0$), its molecular concentration ($a_l = n_l/N_0$), or its mixing ratio ($a_l = y_l/Y_0$) **

*for non-ideal gas, one must multiply p_l, n_l and y_l by the activity coefficient ($0 \leq \gamma_l \leq 1$)
** P_0, N_0, and Y_0 are the standard values: 1 bar, 1 molecule.cm$^{-3}$, and 1
Reaction quotient

• Let consider a reversible reaction involving \(L \) species of the general form

\[
\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l
\]

with \(\nu'_l \) and \(\nu''_l \) the stoichiometric coefficients in the forward and reverse direction respectively.

ex: \(A+B=C+2D \)

• At any time \(t \), the reaction is characterised by the reaction quotient \((Q_R) \):

\[
Q_R(t) = \prod_{l=1}^{L} a_l(t)^{\nu'_l} \quad \text{with} \quad \nu_l = \nu''_l - \nu'_l \quad \text{and} \quad a_l(t) \text{ the activity of species } \chi_l \text{ at instant } t
\]

\[
\Rightarrow Q_R(t) = \frac{a_C(t)a_D^2(t)}{a_A(t)a_B(t)}
\]

• The activity of a species corresponds to its « effective concentration » in a mixture. Dimensionless quantity that can be expressed* as a function of its partial pressure \((a_l = p_l/P^0) \), its molecular concentration \((a_l = n_l/N^0) \), or its mixing ratio \((a_l = y_l/Y^0) \)**

*for non-ideal gas, one must multiply \(p_l, n_l \) and \(y_l \) by the activity coefficient \((0 \leq \gamma_l \leq 1)\)

** \(P^0, N^0, \text{ and } Y^0 \) are the standard values : 1 bar, 1 molecule.cm\(^{-3}\), and 1
Equilibrium constant

• The reaction quotient with the activity expressed in pressure units \(Q_p\) is linked to thermodynamics values, especially the Gibbs Energy through:

\[\Delta G = \Delta G^0 + RT \ln Q_p \]

• When the reaction reached an equilibrium, and thus the system does not evolve anymore, \(Q_p\) is called equilibrium constant and is noted \(K_p\) and \(\Delta G = 0 \Rightarrow \Delta G^0 = -RT \ln K_p\)

• We obtain the expression of the equilibrium constant: \(K_p = \exp(-\Delta G^0/RT)\)

that can be also expressed:

\[K_p = \exp \left(\frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \right) \]

with \(\frac{\Delta S^0}{R} = \sum_{l=1}^{L} \nu_l \frac{s_l^0(T)}{R}\) and \(\frac{\Delta H^0}{RT} = \sum_{l=1}^{L} \nu_l \frac{h_l^0(T)}{RT}\)

The equilibrium constant of a reaction, \(K_p\), can be calculated with NASA coefficients.
Reaction rate

- Still considering our reaction \(\sum_{i=1}^{L} \nu'_i \chi_i = \sum_{i=1}^{L} \nu''_i \chi_i \)

- Conservation of matter imposes:
 \[
 -\frac{1}{\nu'_i} \frac{d[\chi_i]}{dt} = \frac{1}{\nu''_i} \frac{d[\chi_i]}{dt} = \nu, \]
 where \([\chi_i]\) is the concentration of species \(\chi_i\) (molecule.cm\(^{-3}\)) and \(\nu\) is the reaction rate (molecule.cm\(^{-3}\).s\(^{-1}\))

- The reaction rate, \(\nu\), is proportional to the concentration of species. The general formula postulated by Van’t Hoff is
 \[\nu = k(T) \prod_i [\chi_i]^\nu_i\]
 with \(k(T)\) the rate coefficient.

- The production/loss rates of products/reactants are given by
 \[\pm \frac{d[\chi_i]}{dt}\]

- The chemical lifetime of a species destroyed by this reaction is
 \[\frac{[\chi_i]}{\nu}\]
Still considering our reaction \[\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l \]

Conservation of matter imposes:
\[\frac{1}{\nu'_l} \frac{d[\chi_l]}{dt} = \frac{1}{\nu''_l} \frac{d[\chi_l]}{dt} = v, \text{ where } [\chi_l] \text{ is the concentration of species } \chi_l \text{ (molecule.cm}^{-3}\text{) and } v \text{ is the reaction rate (molecule.cm}^{-3}.\text{s}^{-1}\text{)} \]

The reaction rate, \(v \), is proportional to the concentration of species. The general formula postulated by Van’t Hoff is
\[v = k(T) \prod_{l} [\chi_l]^\nu_l \]
with \(k(T) \) the rate coefficient.

The production/loss rates of products/reactants are given by
\[\pm \frac{d[\chi_l]}{dt} \]

The chemical lifetime of a species destroyed by this reaction is
\[\frac{[\chi_l]}{v} \]
Reaction rate

- Still considering our reaction \[\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l \] ex: A+B=C+2D

- Conservation of matter imposes: \[\frac{1}{\nu'_l} \frac{d[\chi_l]}{dt} = \frac{1}{\nu''_l} \frac{d[\chi_l]}{dt} = v, \] where \([\chi_l]\) is the concentration of species \(\chi_l\) (molecule.cm\(^{-3}\)) and \(v\) is the reaction rate (molecule.cm\(^{-3}\).s\(^{-1}\))

- The reaction rate, \(v\), is proportional to the concentration of species. The general formula postulated by Van’t Hoff is \(v = k(T) \prod_i [\chi_i]^{\nu'_i} \) with \(k(T)\) the rate coefficient. ex: \(v = k(T)[A][B]\)

- The production/loss rates of products/reactants are given by \(\pm \frac{d[\chi_l]}{dt}\) ex: \(P_C = d[C]/dt = k[A][B]\)

- The chemical lifetime of a species destroyed by this reaction is \(\frac{[\chi_l]}{v}\)
Reaction rate

- Still considering our reaction \[\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l \]

- Conservation of matter imposes: \[\frac{1}{\nu'_l} \frac{d[\chi_l]}{dt} = \frac{1}{\nu''_l} \frac{d[\chi_l]}{dt} = \nu, \] where \([\chi_l]\) is the concentration of species \(\chi_l\) (molecule.cm\(^{-3}\)) and \(\nu\) is the reaction rate (molecule.cm\(^{-3}\).s\(^{-1}\))

- The reaction rate, \(\nu\), is proportional to the concentration of species. The general formula postulated by Van’t Hoff is \[\nu = k(T) \prod_i [\chi_i]^{\nu_i} \] with \(k(T)\) the rate coefficient.

- The production/loss rates of products/reactants are given by \[\pm \frac{d[\chi_l]}{dt} \]
 - ex: \(P_C = \frac{d[C]}{dt} = k[A][B]\)
 - \(L_A = -\frac{d[A]}{dt} = k[A][B]\)

- The chemical lifetime of a species destroyed by this reaction is \[\frac{[\chi_l]}{\nu} \]
 - ex: \(\tau_A = 1/k[B]\)
The rate coefficient is expressed with an Arrhenius law, or, more commonly, with the modified Arrhenius law:

\[k(T) = AT^n \exp\left(-\frac{E_a}{RT}\right) \]

\(E_a\) is the activation energy of the reaction.
Rate coefficient

- Units of $k(T)$ depends on the type of the reaction (the reaction rate v always in molecule.cm$^{-3}$.s$^{-1}$):
 - **Unimolecular**: $A \rightarrow B+C$
 $v = k(T)[A] \Rightarrow k(T)$ in s$^{-1}$
 - **Bimolecular**: $A+B \rightarrow C+D$
 $v = k(T)[A][B] \Rightarrow k(T)$ in cm3.molecule$^{-1}$.s$^{-1}$
 - **Termolecular**: $A+B+M \rightarrow AB+M$
 $v = k(T)[A][B][M] \Rightarrow k(T)$ in cm6.molecule$^{-2}$.s$^{-1}$

- A 3-bodies reaction is complex. It results from the association of 2 molecules: $A+B \rightarrow AB^*$
 followed by a deexcitation thanks to the collision with M (background gas): $AB^*+M \rightarrow AB+M$

- AB^* is not stable and will decay spontaneously if there is no collision with M: $AB^* \rightarrow A+B$
Three-bodies reactions

- The probability that AB^* meets a M body is large at high P, because molecules are close to each other. In this case, the reaction rate does not depend on $[\text{M}]$ and the reaction can be considered as bimolecular: $\text{A}+\text{B} \rightarrow \text{AB}$
 \Rightarrow In the high-pressure limit: $v_\infty = k_\infty[\text{A}][\text{B}]$

- At low-pressure, the reaction rate is limited by the density of M.
 \Rightarrow In the low-pressure limit: $v_0 = k_0[\text{A}][\text{B}][\text{M}]$

- $[\text{M}]$ is the sum of the density of each molecules (eventually weighted by their efficiencies)
Three-bodies reactions

- The probability that \(AB^* \) meets a \(M \) body is large at high \(P \), because molecules are close to each other. In this case, the reaction rate does not depend on \([M]\) and the reaction can be considered as bimolecular: \(A+B \rightarrow AB \)
 \[\Rightarrow \text{In the high-pressure limit: } v_\infty = k_\infty [A][B] \]

- At low-pressure, the reaction rate is limited by the density of \(M \).
 \[\Rightarrow \text{In the low-pressure limit: } v_0 = k_0 [A][B][M] \]

- \([M]\) is the sum of the density of each molecules (eventually weighted by their efficiencies)

- The transition region between the low- and high-pressure regimes is called « fall-off » region. \(k(T) \) is given by:
 \[k(T) = k_\infty \left(\frac{P_r}{1 + P_r} \right) F \]
 with the reduced pressure \[P_r = \frac{k_0 [M]}{k_\infty} \]
Three-bodies reactions

- The probability that AB^* meets a M body is large at high P, because molecules are close to each other. In this case, the reaction rate does not depend on $[M]$ and the reaction can be considered as bimolecular: $A+B \rightarrow AB$

 \Rightarrow In the high-pressure limit: $v_\infty = k_\infty [A][B]$

- At low-pressure, the reaction rate is limited by the density of M.

 \Rightarrow In the low-pressure limit: $v_0 = k_0 [A][B][M]$

- $[M]$ is the sum of the density of each molecules (eventually weighted by their efficiencies)

- The transition region between the low- and high-pressure regimes is called « fall-off » region. $k(T)$ is given by:

 $$k(T) = k_\infty \left(\frac{P_r}{1 + P_r} \right) F$$

 with the reduced pressure $P_r = \frac{k_0[M]}{k_\infty}$

The notions of « low » and « high » pressure are temperature dependent!
Fall-off region

\[k(T) = k_\infty \left(\frac{P_r}{1 + P_r} \right) F \]

- Several formulations for \(F \) exist:
 - **Lindemann**: \(F = 1 \) \(\text{Lindemann et al. 1922} \)
 - **Troe**: \(\log_{10} F = \frac{\log_{10}(F_{\text{cent}})}{1 + \left[\frac{\log_{10}(P_r) + c}{N - d(\log_{10}(P_r) + c)} \right]^2} \)
 with \(c = -0.4 - 0.67 \times \log_{10}(F_{\text{cent}}) \)
 \(N = 0.75 - 1.27 \times \log_{10}(F_{\text{cent}}) \)
 \(d = 0.14 \)
 \(F_{\text{cent}} = (1 - a) \exp \left(-\frac{T}{T^{***}} \right) + a \exp \left(-\frac{T}{T^*} \right) + \exp \left(-\frac{T^{**}}{T} \right) \)

 \(\text{Troe 1989, 1983} \)
 \(\text{Gilbert et al. 1983} \)

 - **SRI**: \(F = d \left[a \exp \left(-\frac{b}{T} \right) + \exp \left(-\frac{T}{c} \right) \right]^X T^e \)
 with \(X = \frac{1}{1 + (\log_{10} P_r)^2} \)
 \(\text{Stewart et al. 1989} \)
 \(\text{Kee et al. 1996} \)
Three-bodies reactions

- The different expressions for F allow a better description of the fall-off region.

- The more common expression used to study planetary atmospheres is « Troe ».

- A new method is appearing and consists in a logarithmic interpolation of rates coefficients specified at individual pressures.

The rate k at pressure P (with $P_1 < P < P_2$) is given by:

$$\log k(P) = \log k(P_1) + (\log k(P_2) - \log k(P_1)) \frac{\log P - \log P_1}{\log P_2 - \log P_1}$$
Reverse and forward rates

- The reaction $\sum_{l=1}^{L} \nu'_{l} \chi_{l} = \sum_{l=1}^{L} \nu''_{l} \chi_{l}$ can occur in both directions (forward and reverse)

 \[aA + bB = cC + dD \]

- The associated rate coefficients are $k_f(T)$ and $k_r(T)$.

- The reaction rates are respectively $v_f = k_f(T) \prod_{l}[\chi_{l}]^{\nu'_{l}}$ and $v_r = k_r(T) \prod_{l}[\chi_{l}]^{\nu''_{l}}$

 \[v_f = k_f(T)[A]^a[B]^b \quad v_r = k_r(T)[C]^c[D]^d \]

- When the reaction is at equilibrium $v_f = v_r$ and thus $\frac{k_f}{k_r} = \prod_{l}[\chi_{l}]^{\nu_{l}}$

 \[\frac{k_f}{k_r} = [C]^c[D]^d \quad \frac{k_f}{k_r} = [A]^a[B]^b \]

- One can recognise the equilibrium constant, with the activity expressed in term of molecular concentration. Expressed in term of pressure, we obtain:

 \[\frac{k_f}{k_r} = \left(\frac{P^0}{k_B T} \right)^{\sum_{l}^{\nu_{l}}} K_p \quad \Rightarrow \quad \frac{k_f}{k_r} = \left(\frac{P^0}{k_B T} \right)^{\sum_{l}^{\nu_{l}}} \exp(-\Delta G^0/RT) \]
Reverse and forward rates

- The reaction \(\sum_{l=1}^{L} \nu'_l \chi_l = \sum_{l=1}^{L} \nu''_l \chi_l \) can occur in both directions (forward and reverse).

- The associated rate coefficients are \(k_f(T) \) and \(k_r(T) \).

- The reaction rates are respectively \(v_f = k_f(T) \prod_l [\chi_l]^{
u'_l} \) and \(v_r = k_r(T) \prod_l [\chi_l]^{
u''_l} \).

- When the reaction is at equilibrium \(v_f = v_r \) and thus \(\frac{k_f}{k_r} = \prod_l [\chi_l]^{
u_{l}} \) and \(\frac{k_f}{k_r} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \).

- One can recognise the equilibrium constant, with the activity expressed in term of molecular concentration. Expressed in term of pressure, we obtain:

\[
\frac{k_f}{k_r} = \left(\frac{P^0}{k_B T} \right)^{\sum_{l} \nu_{l}} K_p \Rightarrow \frac{k_f}{k_r} = \left(\frac{P^0}{k_B T} \right)^{\sum_{l} \nu_{l}} \exp(-\Delta G^0/RT)
\]

\(\Rightarrow \) knowing \(k_f \) only, \(k_r \) is calculated with NASA coefficients …. !
Outline

• Introduction - Structure of exoplanet atmospheres
• Thermodynamics - Thermochemical equilibrium
• Chemical kinetics
• Photochemistry
• Tools: 1D kinetic models - ingredients + key results
Photolyses

- Photodissociations occur in upper atmosphere of irradiated exoplanets.

- After absorption of a photon, molecule A is excited: $\text{A}+h \nu \rightarrow \text{A}^*$

- Depending on the energy of the absorbed photon, molecule A^* can dissociate and photodissociation products can vary.

- Molecule A has N routes to photodissociate. At each wavelength, the probability that A dissociates through the route k is given by the branching ratio, $q_k(\lambda)$, verifying:
 \[\sum_{k=1}^{N} q_k(\lambda) = 1. \]

<table>
<thead>
<tr>
<th>Photodissociation route</th>
<th>branching ratio [\lambda, range]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$+$h \nu \rightarrow$CH$_3$+H</td>
<td>1.0 [6-151] ; 0.42 [121.6]</td>
</tr>
<tr>
<td>\rightarrow^{1}CH$_2$+H$_2$</td>
<td>0.48 [121.6]</td>
</tr>
<tr>
<td>\rightarrow^{3}CH$_2$+H+H</td>
<td>0.03 [121.6]</td>
</tr>
<tr>
<td>\rightarrowCH+H$_2$+H</td>
<td>0.07 [121.6]</td>
</tr>
</tbody>
</table>

Gans et al. 2011
Photodissociation rate

- For these reactions, the rate coefficient is called the photodissociation rate and is noted J.

 \[
 J_i(z) = \sum_{k=1}^{N} J_i^k(z)
 \]

- For a molecule i, dissociating through the route k, $J_i^k(z) = \int_{\lambda_1}^{\lambda_2} \sigma_i^{abs}(\lambda) F(\lambda, z) q_k(\lambda) d\lambda$

- Absorption cross sections and branching ratios are very important data to calculate the photodissociation rates. In reality these data depends on temperature, but their thermal dependency is badly quantified.\[...\]

- Very few experimental measurements and not trivial to model theoretically
Outline

• Introduction - Structure of exoplanet atmospheres

• Molecular Spectroscopy - Electronic, vibrational, rotational transitions

• Thermodynamics - Thermochemical equilibrium

• Chemical kinetics

• Photochemistry

• Tools: 1D kinetic models - ingredients + key results
A thermo-photochemical model aims at reproducing all physical and chemical processes occurring in an atmosphere in order to study the evolution of its chemical compounds.

These models exist mainly in 1D, but some 2D, and 3D models have been developed.

The atmosphere is represented by a column divided in several layers.

Each of these layers contains molecules that:
- photodissociate with UV radiation
- react with each other
- move from a layer to another thanks to mixing

For each species and in each level, the thermo-photochemical model resolves the continuity equation, which describes the temporal evolution of the density of a species \(i \) at the altitude \(z \):

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z) \mathbf{e}_z)
\]

with:
- \(P_i(z) \) the production rate \((\text{cm}^{-3}\text{s}^{-1})\)
- \(L_i(z) \) the loss rate \((\text{cm}^{-3}\text{s}^{-1})\)
- \(n_i(z) \) the density \((\text{cm}^{-3})\)
- \(\Phi_i(z) \) the flux \((\text{cm}^{-2}\text{s}^{-1})\)
Thermo-photochemical model

• A thermo-photochemical model aims at reproducing all physical and chemical processes occurring in an atmosphere in order to study the evolution of its chemical compounds.

• These models exist mainly in 1D, but some 2D, and 3D models have been developed.

• The atmosphere is represented by a column divided in several layers

 • Each of these layers contains molecules that
 - photodissociate with UV radiation
 - react with each other
 - move from a layer to another thanks to mixing

 • For each species and in each level, the thermo-photochemical model resolves the continuity equation, which describes the temporal evolution of the density of a species i at the altitude z

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z)\vec{e}_z)
\]

with

- $P_i(z)$ the production rate ($\text{cm}^{-3}\text{s}^{-1}$)
- $L_i(z)$ the loss rate ($\text{cm}^{-3}\text{s}^{-1}$)
- $n_i(z)$ the density (cm^{-3})
- $\Phi_i(z)$ the flux ($\text{cm}^{-2}\text{s}^{-1}$)
Continuity equation

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - div(\Phi_i(z)\mathbf{e}_z^\perp)
\]

• Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme, given as input.

• The flux \((\Phi_i)\) is calculated with the \textbf{diffusion equation}, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = - n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i) dT(z)}{T(z)} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

• Ingredients necessary to run such model are:
 - information/data for diffusion
 - a chemical scheme
 - a thermal profile
 - a stellar flux
Continuity equation

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z)\vec{e}_z)
\]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

- The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z)\left[\frac{1}{n_i(z)}\frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + (1 + \alpha_i)\frac{dT(z)}{T(z)dz}\right] - n_i(z)K(z)\left[\frac{1}{y_i(z)}\frac{\partial y_i(z)}{\partial z}\right]
\]

with \(D_i(z)\) the molecular diffusion coefficient (cm\(^2\)s\(^{-1}\)), \(K(z)\) the eddy diffusion coefficient (cm\(^2\)s\(^{-1}\)), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height (cm)

- Ingredients necessary to run such model are:
 - **information/data for diffusion** → molecular and eddy
 - a chemical scheme
 - a thermal profile
 - a stellar flux
Molecular diffusion

• In planetary atmospheres, made of a major molecule, minor molecules undergo molecular diffusion when their density depart from hydrostatic equilibrium.

• The induced flux is proportional to the molecular diffusion coefficient D_i of the minor species i in the major molecule.

• In atmospheres in which the background is formed by 2 compounds A and B (like hot Jupiters atmospheres, made mainly of He and H$_2$), the minor species i diffuses in a binary mixing of gases with a coefficient D_{mix} given by:

$$D_{mix} = \left(\frac{y_A}{D_{iA}} + \frac{y_B}{D_{iB}} \right)^{-1}$$

with $D_{iX} = \frac{0.00143T^{1.75}}{PM_{iX}^{1/2}[(\Sigma_v)_i^{1/3} + (\Sigma_v)_X^{1/3}]}$

with P the pressure (bar), M_{iX} the reduced mass (kg), and Σ_v the sum of volumes of atomic diffusion of each atom of species i and X.
Eddy diffusion

- The Eddy diffusion gathers all processes that tend to mix the atmosphere, whether at micro or macroscopic scale.

- For exoplanets, there is a very large uncertainty for this parameter.

- It can be set constant with altitude. In this case, $K(z)$ is typically between 10^7-10^{12} cm2s$^{-1}$.

- It can be estimated from GCM, using tracers (Parmentier et al. 2013, Charnay et al. 2015).

\[
K_{zz}(P) = K_{zz0} \times P^{-0.4}_{\text{bar}}
\]

for

- warm Neptune GJ 1214b (Charnay et al. 2015)

\[
K_{zz0} = 7 \times 10^2 \text{ m}^2\text{s}^{-1} \text{ for } 1 \times \text{ solar metallicity}
\]

\[
K_{zz0} = 2.8 \times 10^3 \text{ m}^2\text{s}^{-1} \text{ for } 10 \times \text{ solar metallicity}
\]

\[
K_{zz0} = 3 \times 10^3 \text{ m}^2\text{s}^{-1} \text{ for } 100 \times \text{ solar metallicity}
\]

\[
K_{zz0} = 3 \times 10^2 \text{ m}^2\text{s}^{-1} \text{ for pure water case}
\]
Continuity equation

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z) \vec{e}_z^*)
\]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

- The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

- Ingredients necessary to run such model are:
 - **information/data for diffusion** → molecular and eddy
 - a chemical scheme
 - a thermal profile
 - a stellar flux
Continuity equation

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \nabla \cdot (\Phi_i(z) \overrightarrow{e_z})
\]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

- The flux \((\Phi_i)\) is calculated with the diffusion equation, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

- Ingredients necessary to run such model are:
 - information/data for diffusion \(\rightarrow\) molecular and eddy
 - a chemical scheme
 - a thermal profile
 - a stellar flux
To calculate the production and loss rates, the thermo-photochemical model needs a list of species and reactions, with the corresponding coefficients (Arrhenius, TROE,...) → a chemical scheme/network

The first chemical scheme used to study hot Jupiters atmosphere was one developed for Jupiter’s atmosphere (applied to HD 209458b by Liang et al. 2003, 2004). → scheme made for low temperature atmospheres → lack of endothermic reactions that cannot be neglected at high temperature → thermochemical equilibrium was not reproduce in the deep atmosphere

For System solar planets (i.e. cold) endothermic reactions are not included because very slow. Lower boundaries conditions are set to fix mixing ratios.
Chemical scheme

- In hot exoplanet atmospheres, no need of boundaries conditions if thermochemical equilibrium is reproduced.

- **All reactions must be reversed thanks to the equilibrium constant** (calculated with NASA coefficients):

\[
\frac{k_f}{k_r} = \left(\frac{P^0}{k_B T} \right)^{\sum_{i} \nu_i} K_p
\]

NH₃ conditions:
- \(T = 1800 \) K
- \(P = 0.1 \) bar

Thermochemical equilibrium

Evolution of \(y(\text{NH}_3) \) with time
Chemical scheme

• To create the chemical scheme, no real rules:
 - usually/historically, made manually adding reactions found in literature to each others
 - developed from Jupiter's or Earth’s model (depending on kind of planets studied)
 (Moses et al. 2011, Kopparapu et al. 2012, Hu et al. 2012,…)
 → uncertainty on the completeness of these schemes.…

- other approach: use chemical schemes validated experimentally in combustion field
 (Venot et al. 2012, 2015, 2020)

• Depending on the scheme used, differences in the predicted abundances can occur
 → quenching does not occur at the same level
Chemical scheme

- To create the chemical scheme, no real rules:
 - usually/historically, made manually adding reactions found in literature to each others
 - developed from Jupiter's or Earth's model (depending on kind of planets studied)
 (Moses et al. 2011, Kopparapu et al. 2012, Hu et al. 2012,…)
 ➔ uncertainty on the completeness of these schemes….

- other approach: use chemical schemes validated experimentally in combustion field
 (Venot et al. 2012, 2015, 2020)

- Depending on the scheme used, differences in the predicted abundances can occur
 ➔ quenching does not occur at the same level

- For models focusing on the deep/middle atmosphere (\(P \gtrsim 10^{-8}\) bar), only neutral species
 need to be included in the chemical scheme

- Models for the upper atmosphere (thermosphere) need to include ions and electrons
 (Yelle 2004, Garcia Munoz 2007, Koskinen et al. 2013) and some models couple neutral and ions chemistry
 (Lavvas et al. 2014, Rimmer et al. 2014, 2016)
Continuity equation

\[\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z) \mathbf{e}_z) \]

• Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

• The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

• Ingredients necessary to run such model are:
 - information/data for diffusion ⇒ molecular and eddy
 - a chemical scheme
 - a thermal profile
 - a stellar flux
Continuity equation

\[\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z) \mathbf{e}_z) \]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.
- The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient (cm\(^2\)s\(^{-1}\)), \(K(z)\) the eddy diffusion coefficient (cm\(^2\)s\(^{-1}\)), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height (cm)

- Ingredients necessary to run such model are:
 - information/data for diffusion \(\mapsto\) molecular and eddy
 - a chemical scheme
 - a **thermal profile**
 - a stellar flux
Thermal profile

• In most current kinetic models, the thermal profile is a fix input parameter

• The PT profile comes from theoretical models (GCMs or 1D/2D radiative-convective models) or is derived from observations (with a retrieval code)

• Temperature between 500 and 3000 K for hot gaseous giant planets

• Temperature inversion are possible

Case of HD 209458b: first, thermal inversion was invoked to explain observations by Spitzer (e.g. Knutson+2008, Madhusudhan & Seager 2009, Line+2014) but Diamond-Lowe+2014 analysed the same data with a new method and found that thermal inversion was no longer necessary. Then the analyse of high-precision HST data (Line+2016) confirm that no thermal inversion exist in this planet…
The limitation of using fix profiles is that the change of chemical composition (and thus opacity of the atmosphere) is not taken into account leading to a non-consistent result. Up to now, only one fully-consistent kinetic model has been developed (Drummond et al. 2016). Impact on the temperature (up to 100 K) and the chemical composition.
Continuity equation

\[
\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z)e_z^*)
\]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

- The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[
\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right]
\]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

- Ingredients necessary to run such model are:
 - information/data for diffusion \(\rightarrow\) molecular and eddy
 - a chemical scheme
 - a **thermal profile**
 - a stellar flux
Continuity equation

\[\frac{\partial n_i(z)}{\partial t} = P_i(z) - L_i(z) - \text{div}(\Phi_i(z) \vec{e}_z^i) \]

- Production \((P_i)\) and loss \((L_i)\) rates are calculated with formula of chemical kinetics (seen previously) and thanks to the chemical scheme.

- The flux \((\Phi_i)\) is calculated with the **diffusion equation**, taking into account molecular and eddy diffusions

\[\Phi_i(z) = -n_i(z)D_i(z) \left[\frac{1}{n_i(z)} \frac{\partial n_i(z)}{\partial z} + \frac{1}{H_i(z)} + \frac{(1 + \alpha_i)}{T(z)} \frac{dT(z)}{dz} \right] - n_i(z)K(z) \left[\frac{1}{y_i(z)} \frac{\partial y_i(z)}{\partial z} \right] \]

with \(D_i(z)\) the molecular diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(K(z)\) the eddy diffusion coefficient \((\text{cm}^2\text{s}^{-1})\), \(\alpha_i(z)\) the thermal diffusion coefficient, and \(H_i(z)\) the scale height \((\text{cm})\)

- Ingredients necessary to run such model are:
 - information/data for diffusion \(\rightarrow\) molecular and eddy
 - a chemical scheme
 - a thermal profile
 - a stellar flux
Stellar flux

- In thermo-photochemical model, the UV-vis stellar flux is needed to calculate photodissociation rates

- Unlike the Sun, the stellar flux of other stars in this range is rarely known.

- Need to use proxy for which observations are available, eventually combined to theoretical models (e.g. X-exoplanets, Phoenix, Kurucz)
Some key results...

- In the deep atmosphere CO converted to CH$_4$ through the net reaction: $\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O}$ (detailed pathways vary depending on chemical schemes)

- The CO/CH$_4$ ratio is:
 - strongly modified by mixing compared to what is predicted by equilibrium
 - very dependent on effective temperature of the planet
 - very dependent on Eddy diffusion coefficient

Young Giant Planets
Moses et al. 2016
Carbon-Oxygen ratio

- in hot atmospheres \((T \gtrapprox 800\text{K})\) molecular abundances are very dependent on the \(\%\) ratio of the atmosphere.

- low \(\%\): dominated by \(\text{H}_2\text{O}, \text{CO}, \text{CO}_2\)
- high \(\%\): dominated by \(\text{CO}, \text{C}_2\text{H}_2, \text{HCN}, \text{CH}_4\)

Rocchetto et al. 2016
Carbon-Oxygen ratio

- The differences of composition are visible on spectra

- Change of shape happens drastically around $\% = 1$

Rocchetto et al. 2016

Atmospheric absorption (ppm) $T = 1500$ K, solar metallicity

hot jupiter
• First observations of WASP-39b with JWST: 1st detection of S-species (SO$_2$)

• Analysis with kinetic models show that the production of this species was initiated by photochemistry

\[
\begin{align*}
\text{H}_2\text{O} & \stackrel{\text{h} \nu}{\rightarrow} \text{OH} + \text{H} \\
\text{H}_2\text{O} + \text{H} & \rightarrow \text{OH} + \text{H}_2 \\
\text{H}_2\text{S} + \text{H} & \rightarrow \text{SH} + \text{H}_2 \\
\text{SH} + \text{H} & \rightarrow \text{S} + \text{H}_2 \\
\text{S} + \text{OH} & \rightarrow \text{SO} + \text{H} \\
\text{SO} + \text{OH} & \rightarrow \text{SO}_2 + \text{H} \\
\text{net: } \text{H}_2\text{S} + 2\text{H}_2\text{O} & \rightarrow \text{SO}_2 + 3\text{H}_2
\end{align*}
\]
Towards 3D kinetic models - pseudo 2D model

- Results presented are found with 1D models, taking into account vertical mixing only, but horizontal mixing has importance (i.e. Agúndez+ 2014; Venot+ 2020)

- With pseudo 2D model, we find that at equator, homogenisation of abundances, close to that of the dayside, or in-between day/night abundances, as for CH$_4$
Towards 3D kinetic models - reduced chemical scheme

• But what about other latitudes?

• Need a real 3D kinetic model, but the major issue is the huge computational time required by a GCM included a set of 2000 reactions...

• solution: to use a reduced chemical scheme (less complete but enough to study major species - Venot et al. 2019, 2020)

• methodology:
 1. identify + eliminate unimportant species and associated reactions
 2. sensitivity analysis to eliminate less important reactions
 (step 2 is very time consuming so step 1 is required)

3. compare the results obtained with full and reduced schemes
Towards 3D kinetic models - reduced chemical scheme

- Temporal evolution in 0D in various P and T:

1. CH$_4$ - 2500K - 1bar
2. NH$_3$ - 2000K - 100 bar
3. CO$_2$ - 1000K - 1bar
4. H$_2$O - 500K - 1bar
Towards 3D kinetic models
- reduced chemical scheme

- Abundances in 1D:

<table>
<thead>
<tr>
<th>Species</th>
<th>HD 209458b</th>
<th>HD 189733b</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>1×10^{-1} (@1 $\times 10^{-1}$)</td>
<td>6×10^{-1} (@3 $\times 10^{-1}$)</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>6×10^2 (@1 $\times 10^{-1}$)</td>
<td>1×10^{-1} (@3 $\times 10^2$)</td>
</tr>
<tr>
<td>CO</td>
<td>7×10^{-2} (@1 $\times 10^{-1}$)</td>
<td>5×10^{-1} (@6 $\times 10^1$)</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1×10^{-2} (@3 $\times 10^{-1}$)</td>
<td>8×10^{-1} (@1 $\times 10^{-1}$)</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>2×10^3 (@1 $\times 10^{-1}$)</td>
<td>2×10^{-2} (@1 $\times 10^{-1}$)</td>
</tr>
<tr>
<td>HCN</td>
<td>6×10^1 (@1 $\times 10^{-1}$)</td>
<td>1 (@1 $\times 10^2$)</td>
</tr>
</tbody>
</table>

Venot et al. 2019
Towards 3D kinetic models
- reduced chemical scheme

- Uncertainty propagation in 1D:

A two-parameters temperature-dependent uncertainty factor associated to each rate constant

$$\Delta \log k(T) = \log F(T)$$

$$F(T) = F(300K) \times \exp \left[g \left(\frac{1}{T} - \frac{1}{300} \right) \right]$$

Towards 3D kinetic models - reduced chemical scheme

• Uncertainty propagation in 1D:

1000 Monte Carlo runs with the full scheme:
vertical abundances profiles - distribution of abundances at 1 mbar

given the uncertainty on the vertical abundances with the full scheme, the reduced scheme is really close to nominal values

Venot et al. 2019
Towards 3D kinetic models

- 3D kinetics model developed by B. Drummond at Equilibrium Kinetics
 - homogenisation of abundances for CH\(_4\) and HCN
 - for CO\(_2\), abundance at the nightside terminator decreases but there is still a significant horizontal gradient
Towards 3D kinetic models

• The effects of 3D kinetics should be visible on the observations thanks to the spectral signature of CH$_4$, HCN and CO$_2$

• 3D kinetic models might be probably mandatory in the future to analyse JWST and Ariel data
Planetary Atmospheres - Chemistry & Photochemistry

Olivia Venot
olivia.venot@lisa.ipsl.fr

ARES III School, 11-17 September 2023