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20 years of exoplanet atmospheric characterization

§ Exoplanet atmospheric observations are now done routinely

§ Observations revealed a great diversity of atmospheres, many of them seem cloudy/hazy

§ Plenty molecules/atoms detected (H2O, CO, CH4, NH3, HCN, CO2, C2H2, H, He, Na, K, Cr, V, Fe, FeH, TiO, VO, C13O )

Guillot et al. 2022

ExoAtmospheres database
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Main goal = understand the diversity of exoplanets (from Ariel Red book) : 
1) Which physical/chemical processes shape exoplanet atmospheres ?

2) What are the compositions/physical conditions of exoplanet interiors ?

3) Which processes control exoplanet formation and evolution ?
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What is the thermal structure of exoplanets and how is it shaped?

Madhusudhan 2019

Ø Which planets have a stratospheric thermal inversion ?

Ø What is the impact of clouds, atmospheric dynamics or fingering convection ?
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Atmospheres as a probe of planetary interior and formation

Metallicity = fraction of heavy elements (heavier than H and He)
For Solar System atmospheres, metallicity ≈ [C]/[C]solar
For exoplanetary atmospheres, metallicity ≈ [O]/[O]solar

§ Metallicity decreases with planetary mass in the Solar System
§ Short-period planets formed in-situ should have a relatively low metallicity

→ Metallicity measurements give constraints on formation and migration mechanisms

Kreidberg et al. (2015)
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Atmospheres as a probe of planetary interior and formation

Oberg et al. (2013)

C/O= ( &' ( &') ( &*+ )
( *)' ( &' (- &') )

Cridland et al. (2020)

§ Atmospheric C/O may depend on where the planet formed
High C/O => gas accretion
Low C/O  => enrichment by planetesimal

§ C/O may decrease for low-mass planets

§ The reallity is certainly much more complex

→ C/O measurements give constraints on formation mechanisms
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Forward model
+

Retrieval techniques

Interpretation

Data

Atmospheric parameters

e.g. TauREX

No atmosphere, clouds or 
!"#! $%&'$()%*+)&, $&--

Yes, it is definitively flat!
10b$ for that…

Is it really flat?
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Transit depth:

! " =
$%
$⋆

'

+
2

$⋆2
*
+,

+⋆
- 1 − 012 3,5 6- =

$% + ℎ"
$⋆

'

Equivalent altitude:

89 ≈ ; < = =. ?@ − AB

see De Wit & Seager (2013) and Macdonald & Cowan (2019)

Optical depth (cross-section):

C -, " =D
E

*
1F

GF

HI ", J, K LI M 6N

Radiative transfer: transit spectroscopy
x

r

Rp

z
Observer Star

1D Forward models



Synthetic Earth’s transit spectrum

Macdonald & Cowan (2019)

Radiative transfer: transit spectroscopy

1D Forward models
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Real color

Credit: Himawary/Simon Proud/Vivien Parmentier



11Credit: Himawary/Simon Proud/Vivien Parmentier

8.6 microns 
spectral window (15 km)



12Credit: Himawary/Simon Proud/Vivien Parmentier

9.6 microns 
O3 band (40 km)
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Ideal case: 
• hydrostatic+isothermal
• cross-sections independent of P & T
• constant abundances

Comparison with vertical optical depth:

Earth: !~75
K2-18 b: !~60
HD209458 b: !~38

Transits probe pressures 1-2 orders of magnitude lower than eclipses

Radiative transfer: transit spectroscopy

1D Forward models x

r
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z
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Ideal case: 
• hydrostatic+isothermal
• cross-sections independent of P & T
• constant abundances

Variation of transit depth:

!1 #1, %1 = !2 #2, %2 ≈0.56 ; ∆* = +,-
. /0

. /1
; ∆2 =

134+,-
. /0
. /1

3⋆
1

→ Transit spectroscopy easier for high scale height (e.g. hot giant planets)
6 789:

6 78;<

≈ 103 → ∆* ≈ ?+

→ Transit depth at low resolution depends on the mean value of ,- .

Radiative transfer: transit spectroscopy

1D Forward models
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Opacity of H2O and CH4 (at 300K & 1 mbar) computed with the online tool DACE/OPACITY (https://dace.unige.ch/opacity/)

at 1.4 !m:  "#$%
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≈ 0.1
H2O should be masked by CH4 at low resolution but not at high resolution

Radiative transfer: transit spectroscopy

1D Forward models

H2O

CH4
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Example K2-18 b: 

Tsiaras et al. (2019)

A temperate sub-Neptune, with water 
vapour and potentially water clouds

K2-18b:
Mass = 8.63 M⊕
Radius = 2.6 R⊕
Irradiation = 1368 W/m2

(1361 W/m2 for the Earth)
Orbital period = 33 days

HST transit spectrum

Benneke et al. (2019)

Radiative transfer: transit spectroscopy

1D Forward models
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Transit spectra of K2-18 b computed with Exo-REM (metallicity=200×solar)

CH4 should be the dominant absorber for a solar C/O
H2O should be the dominant absorber for C/O<0.1×C/Osolar

Radiative transfer: transit spectroscopy

1D Forward models

Example K2-18 b: 
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Intensity ! = amount of energy passing through a surface 
area "#, within a solid angle "$, per wavelenght interval
"%, per unit time (& in J m-2 sr-1 '(-1):

dW
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*
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Moments:
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4
&(-, ), %, /)"Ω
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4
& -, ), %, / ) . *"Ω =8& -, 9, :, %, / ;<= 9 sin 9 "9"AFlux:

Mean intensity:

Radiative transfer: definition of intensity and flux

1D Forward models



19

Radiative transfer: equation for plane-parallel

Optical depth & extinction coefficient:

!" = −% &, (, ) * !+
%(&, (, )) =.

/
01 (2134+ + 21+637)

Optical mean free path: 8 = 9
:

Radiative transfer equation:

* !;
!" = ; − <

Local thermodynamic Equilibrium (LTE):
Tradiation=Tkinetics

mean free path of photons ≪ length scale of T variations

1D Forward models



Solution a purely emitting atmosphere

1D Forward models
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The two-stream solution consists in 
approximating ! so that it is related to ".

We assume   $
↑

&↑ =
$↓
&↓ =

)
* ⇔ ,= )

*
(generally -= 3)

, /!
/0 = ! − 2

Goal: to compute the total upward
and downward flux

The two-stream approximation

1D Forward models "↑

"↓

!(,)
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Case of a purely emitting atmosphere:

!↑ τ = 0 = !↑ τ0 &'()* + ,
*

)*
2./0&'() 12Outgoing radiation:

34(6) = 0(8, :) 1&'()
1;<=(6)Weighting function:

Fortney 2018

Peak of contribution:
at > ~2/3 also called the photosphere

Brightness temperature:
@A~@(> = 2/3)

Transmittance

The two-stream approximation

1D Forward models
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The emission spectrum with/without thermal inversion

Link between thermal structure and emission

1D Forward models

Variation of thermal flux: !"
" ≈ − %&

'&
'%

()*+
()*,

!-
-

Case of a purely emitting atmosphere:

For	!- > 0 ∶

• 56
6 < 0→ 89

8: < 0 (no thermal inversion)

• 56
6 > 0→ 89

8: > 0 (thermal inversion)

• 56
6 ≈ 0→ 89

8: ≈ 0 (isothermal)

Fig. from Q. Changeat
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1D Forward models

Earth’s thermal emission

Where is the signature of the 
stratospheric thermal inversion 

in the emission spectrum ?

CO2

O3

H2O

CH4

H2O

Link between thermal structure and emission
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1D Forward models

Earth’s thermal emission

CO2

O3

H2O

CH4

H2O

Link between thermal structure and emission
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General case of the two-stream approximation 
(thermal emission + scattering)

!"↑
!$ = &'"↑ − &)"↓ − 2, 1 − .0 0
!"↓
!$ = &)"↑ − &'"↓ + 2,(1 − .0)0

Method &' &) 4∗
Quadrature 3 1 − .0(1 + 7)/2 3.0(1 + 7)/2 1/ 3
Hemispheric mean 2 − .0(1 + 7) .0(1 − 7) 1/2

See Toon et al. (1989) for the complete solution with multi-layers

Quadrature for deep atmosphere & Hemispheric mean for the upper atmosphere

1D Forward models
Methods for solving RT
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1) Semi-grey analytical model

§ Model of Guillot et al. (2010):

Two parameters (kvis and kir	) for visible (stellar) and infrared (planetary) radiation

§ Models with sub-bands:
e.g. Parmentier et al. (2014) and Robinson & Catling (2012):

One parameter for visible (kvis ) and three parameters for infrared (kir1	, kir2 , ) = +,-
∆, ) Op

ac
ity

(/
0)

0

/1

/2
102

∆0

Only for computing the thermal structure (e.g. for retrieval or thermal evolution)

Methods for solving RT

1D Forward models

2) Correlated-k method
Multiple sub-bands representative f the distribution of opacity inside a large band

Fast method, excellent for low and medium resolution
Can combine different molecular species
Widely used for atmospheric models and 3D GCM

ka

0
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1) Semi-grey analytical model

§ Model of Guillot et al. (2010):

Two parameters (kvis and kir	) for visible (stellar) and infrared (planetary) radiation

§ Models with sub-bands:
e.g. Parmentier et al. (2014) and Robinson & Catling (2012):

One parameter for visible (kvis ) and three parameters for infrared (kir1	, kir2 , ) = +,-
∆, ) O
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ci

ty
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Only for computing the thermal structure (e.g. for retrieval or thermal evolution)

Methods for solving RT

1D Forward models

2) Correlated-k method

Exo_k: tool to compute kcoefficients for different formats 
(PCM GCM, Exomol, Nemesis, PetitCode, TauREx, Exo-REM, ARCIS):
http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/index.html
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Thermal structure

Chemical composition

Cloud distribution

Transmission & emission
spectra

Radiative transfer

Self-consistent models

Input parameters:
§ Planetary radius
§ Gravity
§ Irradiation
§ Tint

§ Metallicity
§ C/H, O/H, N/H,…
§ Initial TP profile
§ Opacities

Iterations until converged
(difficult sometimes…)

1D Forward models

Models available online:
Exo-REM, PICASO, ATMO, PetitCode, Exo_k

→ Ideal for limited dataset or limited parameter exploration and for predicting/interpreting observations

Avantage/disavantages:
+ Physical solutions
- Solutions biased by model parametrization
- Slow (cannot be run online in retrieval)
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Thermal structure

Chemical composition

Cloud distribution

Radiative transfer

Input parameters:
§ Planetary radius
§ Gravity
§ Abundance
§ TP profile
§ Cloud profile
§ Opacities

Transmission & emission
spectra

Parametric models

1D Forward models

→ Ideal for atmospheric retrieval without be biased by model parametrizations

Avantage/disavantages:
+ Solutions not biased by model parametrization
+ Fast (can be run online in retrieval)
- Can provide unphysical solutions



31

Retrieval techniques
Chi2 with model grids

!" =$
%&'

( )%*+, − )%.*/01
"

2%"

!" = !.%(" + ∆!"
Ø Contours of constant !" :

Ø Simplest method, used in particular for self-consistent models

Ø Principe: 
- N measurements )%*+, ± 2% (uncorrelated)
- )%.*/01 from a model 
- Minimization of the cost function:

Simulation of GJ 504 b with MIRI-MRS (Mâlin et al. in prep): 
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Retrieval techniques

JWST-NIRSpec spectrum of WASP-39 b (ERS) 

Chi2 with model grids
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Retrieval techniques
Bayesian inference (MCMC & Nested-sampling)

A simple retrieval with a Guillot TP profile (5 parameters) + 3 molecule abundances (e.g. H2O, CH4, CO) 
+ clouds (Ptop) + Rp = 10 free parameters !

→ A statistical method is required to explore the parameter space, focusing on the best fits

Ø Bayesian inference

! model|data = ! data|model P model
! data

Posterior probability
of the model

Likelihood function
of the data

Prior probability
of the model

Evidence [not important 
because absorbed into the 

normalisation of the posterior]
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Retrieval techniques
Bayesian inference (MCMC & Nested-sampling)

A simple retrieval with a Guillot TP profile (5 parameters) + 3 molecule abundances (e.g. H2O, CH4, CO) 
+ clouds (Ptop) + Rp = 10 free parameters !

→ A statistical method is required to explore the parameter space, focusing on the best fits

Ø Bayesian inference

! model|data ∝ ! data|model ! model ∝ exp −χ//2

We assume the 
prior is constant

Likelihood function
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Retrieval techniques
Bayesian inference (MCMC & Nested-sampling)

1) Markov chain Monte Carlo (MCMC) 2) Nested Sampling

Ensemble of walkers converging toward best solutions
(e.g. Pyrat Bay, Madhusudhan et al.)

Determination of volumes of equal likelihood
(e.g. Tau-Rex, petitRADTRANS, NEMESIS, ARCiS, CHIMERA)

Nested sampling is more efficient to find global maximums of the likelihood
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Retrieval techniques
Bayesian inference (MCMC & Nest-sampling)

Posteriors distributions 
from Tau-Rex

Barstow et al. 2022

Intercomparison of retrieval tools for Ariel (Barstow et al. 2022)

Cloudy warm Neptune



37

Retrieval techniques
Bayesian inference (MCMC & Nest-sampling)

Gressier et al. (submitted)

Strength of molecular detection with Bayes factor
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Retrieval techniques

Carter et al. (2022)

JWST imaging of HIP 65426 b from 2-16 micron

Bayesian inference (MCMC & Nest-sampling)

Interesting for model grids with more than 3 parameters

Interpolated model grid for MCMC
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Retrieval techniques
Optimisation estimation

Method widely used for Earth atmosphere remote sensing and for solar system atmospheres

Principe: 
Minimization of a cost function:

y	= data vector
x	= model parameter vector
xa = a priori vector
F(x)	= forward model

Correlation between temperatures of layer i and j:

→ Algorithm to iterate toward a state minimizing J

) * = , − . * /0123 , − . * + * − *4 /0423 * − *4

Error covariance matrix A priori covariance matrix

56 Weight of the a priori + 
correlation between parameters

04,89 = 04,8804,99
3/6;

2 <= >?
>@
A

Length of correlation



Retrieval techniques
Optimisation estimation

Lee et al. 2011
(NEMESIS)

Exploration of the impact of the a priori TP profile

§ A priori profiles can be provided by self-consistent models but their
impact must be analysed

§ Optimisation estimation is a fast method, ideal for high quality data or 
with additionnal constraints



Retrieval techniques
Optimisation estimation

Optimisation estimation has a great potential for brown dwarfs and young giant planets

NIRSpec/MIRI-MRS spectrum of VHS 1256 b

Miles et al. (2022)



Avantages/disavantages of each method

Chi2 with model grids:
+ Computed just once

- Limited number of free parameters

- Strongly biased by model parametrizations

→ Ideal for limited parameter exploration (i.e. 2D/3D simulations) or low quality dataset

Bayesian inference (MCMC & Nested Sampling):
+ Better estimation of uncertainties than Chi2 maps and shows correlations

+ Exploration a large parameter space

+ Model selection (Bayes factor)
- Not efficient for retrieving profiles

→ Ideal for most cases for exoplanets

Optimisation estimation:
+ Efficient for retrieving profiles

+ Faster than Bayesian inference

- Requires a priori 
- Limited exploration of possible solutions

→ Ideal for emission spectroscopy with high-quality dataset and additional constraints

A combinaison of methods/models can be very useful
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Lessons from models and retrieval
1) Atmospheric models work !

TYC 8998-760-1 b

Zhang et al. (2022)

HR8799 b

Petrus et al. in prep
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Lessons from models and retrieval
1) Atmospheric models work !

Two main reasons for cases for which models do not work: missing physical processes or 3D effects

Exemple #1: H- in ultra-hot Jupiters

Parmentier et al. (2018)

Exemple #2: nightside clouds on hot Jupiters

Gao et al. (2020)

Lee et al. (2016)
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Lessons from models and retrieval
2) Relative vs absolute measurements

C/O ≈ %&
'(& ) %& = *

+(,
-, )*

(warm planets)

→ relative measurement

metallicity ≈ [H2O]/ H2O :;<=>

→ absolute measurement

Line et al. 2021

Correlation between [H2O] and [CO]: C/O must be derived directly as posterior
Uncertainty on C/O smaller than on metallicity

Relative measurements are more accurate than absolute measurements
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Lessons from models and retrieval
2) Relative vs absolute measurements

Petrus et al. in prep

Comparison of retrieved parameters (BT-Settl & Exo-REM grids) 
for brown dwarfs observed with X-Shooter (R=4000)

Removing the continuum + renormalisation can improve the C/O determination at medium/high resolution
(elimination of biases from models and observations)
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Lessons from models and retrieval
3) Biases: metallicity/cloud

Line & Seager 2013

Fortney et al. 2022
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Lessons from models and retrieval

Gandhi et al. 2020

HR spectrum of GJ 436b

3) Biases: metallicity/cloud

How to probe cloudy/hazy atmospheres ?

1) Large spectral coverage (JWST, Ariel)

2) High-resolution spectroscopy (VLT-CRIRES, SPIRou, ELT-ANDES)

3) Thermal phase curves (JWST, Ariel)

HST+Spitzer spectrum of GJ 3470 b

Benneke et al. 2018

Charnay et al. 2015
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Lessons from models and retrieval
4) Biases: thermal inversion

Diamond-Lowe et al. (2014)

§ Detection of a stratospheric thermal inversion on HD209458 b from Spitzer eclipses (Knutson et al. 2007)
§ Two classes of hot Jupiters with a transition at Tday ~ 1600 K (Fortney et al. 2008)
§ Thermal inversion ruled-out after reanalysis of Spitzer data (Diamond-Lowe et al. 2014)

Strong impact of instrumental systematics on retrieval
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Lessons from models and retrieval
4) Biases: thermal inversion

Mansfield et al. (2021)

Evolution of the water feature in eclipses
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Lessons from models and retrieval
4) Biases: thermal inversion

Mansfield et al. (2021)

Hot Jupiters with
thermal inversion

Ultra-hot Jupiters

Hot Jupiters without
thermal inversion

Thermal inversions appear at higher temperatures (Tday ~ 2000 K) than initially thought

Evolution of the water feature in eclipses



52

Lessons from models and retrieval
4) Biases: isothermal/clouds

L dwarfs

~1300 K

T dwarfs

Reddening of L dwarfs

HD206893 b’s spectrum = almost a black body

Delorme et al. (2017)
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Lessons from models and retrieval
4) Biases: isothermal/clouds

How to reduce spectral features in emission spectra ?
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Lessons from models and retrieval
4) Biases: isothermal/clouds

How to reduce spectral features in emission spectra ?

Charnay et al. (2018)

Clouds Reduced thermal gradient

Tremblin et al. (2017)
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Lessons from models and retrieval
4) Biases: isothermal/clouds

Atmospheric retrieval of two L dwarfs by Burningham et al. (2017):

But the retrieval might be biased by its relatively simple cloud model

Both clouds + reduced thermal gradient ! !
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Lessons from models and retrieval
4) Biases: isothermal/clouds

How to break degeneracis between clouds and reduced thermal gradient ?

1) Cloud absorption features

2) Thermal evolution

Miles et al. (2022)

Silicate feature on VHS 1256 b

Excess of BD at the LT transition

Kirkpatrick et al. (2020)

But:
1) Clouds can be a mixture of species (e.g. Jupiter’s clouds)
2) Best et al. 2020 found a minimum of BD at the LT transition
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Lessons from models and retrieval
5) Biases: 3D structure

Inhomogeneous cloud cover
Cloudy morning

terminator
Cloud-free evening

terminator

Retrieval with cloud fraction:
Degeneracy between clouds and metallicity
→ need measurements of Rayleigh slope or 
HR spectroscopy

Line & Parmentier (2016)
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Lessons from models and retrieval
5) Biases: 3D structure

Day-night chemical heterogeneities

Pluriel et al. (2020) Pluriel et al. (2022)

Ø Measurements of C/O can be biased by chemical heterogeneities
Ø Chemical disequilibrium limits heterogeneities except at high temperature
Ø Phase curves can be used to map horizontal variations
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Lessons from models and retrieval
5) Biases: 3D structure

Charnay et al. (2021)

Retrieval of a simulated Ariel phase curve of WASP-43b with nightside clouds

Transit 
(nightside)

Eclipse 
(dayside)
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Lessons from models and retrieval
5) Biases: 3D structure

Improvement with global/2D retrieval
(e.g. Chubb & Min 2022, Irwin et al. 2019, Changeat et al. 2021)

Chubb & Min (2019)

Without cloud With clouds

Without clouds
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Lessons from models and retrieval
6) Biases: time-variability

Possible variability of cloudiness and spectra

3D simulation of K2-18 b with water clouds

Charnay et al. (2021)

Variability of a brown dwarf with Spitzer

Apai et al. (2017)
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Take-home messages

Ø We are now in the golden age of exoplanet atmospheres !

Ø The different atmospheric models (self-consistent/parametric) and retrieval methods (grids, MCMC, optimisation 
estimation) have advantages and disavantages. Ideally, use a combinaison of models

Ø Atmospheric models work (at least at first order) !

Ø When models do not work, generally a physical process is missing or it is due to 3D effects

Ø The interpretation of retrieval outputs is necessary and requires to understand the potential biases

Ø Clouds/hazes and 3D effects are likely the largest sources of uncertainties and biases in atmospheric retrievals


