Atmospheric models for retrieval and interpretation

Benjamin Charnay

Ecole des Houches, 2022

20 years of exoplanet atmospheric characterization

- Exoplanet atmospheric observations are now done routinely
- Observations revealed a great diversity of atmospheres, many of them seem cloudy/hazy
- Plenty molecules/atoms detected (H₂O, CO, CH₄, NH₃, HCN, CO₂, C₂H₂, H, He, Na, K, Cr, V, Fe, FeH, TiO, VO, C¹³O)

ExoAtmospheres database

<u>Main goal = understand the diversity of exoplanets (from Ariel Red book) :</u>

- 1) Which physical/chemical processes shape exoplanet atmospheres ?
- 2) What are the compositions/physical conditions of exoplanet interiors ?
- 3) Which processes control exoplanet formation and evolution ?

What is the thermal structure of exoplanets and how is it shaped?

- Which planets have a stratospheric thermal inversion ?
- > What is the impact of clouds, atmospheric dynamics or fingering convection ?

Atmospheres as a probe of planetary interior and formation

Metallicity = fraction of heavy elements (heavier than H and He) For Solar System atmospheres, metallicity \approx [C]/[C]_{solar} For exoplanetary atmospheres, metallicity \approx [O]/[O]_{solar}

- Metallicity decreases with planetary mass in the Solar System
- Short-period planets formed in-situ should have a relatively low metallicity

→ Metallicity measurements give constraints on formation and migration mechanisms

Atmospheres as a probe of planetary interior and formation

1.2

1.

ratio 9.0 ratio

0.4

0.2

0.0

c/0

 $C/O = \frac{([CO] + [CO_2] + [CH_4])}{([H_2O] + [CO] + 2[CO_2])}$

- Atmospheric C/O may depend on where the planet formed High C/O => gas accretion Low C/O => enrichment by planetesimal
- C/O may decrease for low-mass planets
- The reallity is certainly much more complex

→ C/O measurements give constraints on formation mechanisms

Cridland et al. (2020)

6

Interpretation

Atmospheric parameters

Forward model

Retrieval techniques

Data

Yes, it is definitively flat! 10b\$ for that...

No atmosphere, clouds or high mean molecular mass

e.g. TauREX

Radiative transfer: transit spectroscopy

Optical depth (cross-section):

$$\tau(r,\lambda) = \sum_{i} \int_{-\infty}^{+\infty} \sigma_i(\lambda, P, T) n_i(z) dx$$

$$\frac{\text{Iransit depth:}}{D(\lambda) = \left(\frac{R_p}{R_\star}\right)^2 + \frac{2}{{R_\star}^2} \int_{R_p}^{R_\star} r\left(1 - e^{-\tau(r,\lambda)}\right) dr = \left(\frac{R_p + h_\lambda}{R_\star}\right)^2$$

Equivalent altitude:

$$h_{\lambda} \approx r(\tau = 0.56) - Rp$$

see De Wit & Seager (2013) and Macdonald & Cowan (2019)

Radiative transfer: transit spectroscopy

Synthetic Earth's transit spectrum

Real color

Credit: Himawary/Simon Proud/Vivien Parmentier

8.6 microns spectral window (15 km)

Credit: Himawary/Simon Proud/Vivien Parmentier

9.6 microns O_3 band (40 km)

Credit: Himawary/Simon Proud/Vivien Parmentier

Radiative transfer: transit spectroscopy

Ideal case:

- hydrostatic+isothermal
- cross-sections independent of P & T
- constant abundances

$$\tau(b,\lambda) = \sum_{i} \int_{-\infty}^{+\infty} \sigma_{i}(\lambda) n_{i}(x) dx \; ; \; p(z) = p(z_{0}) \exp\left(-\frac{z-z_{0}}{H}\right) \text{ with } H = \frac{RT}{M_{0}}$$
$$n_{i}(x) = ni_{0}e^{-z/H} \text{ with } z = \sqrt{r^{2} + x^{2}} - Rp \approx r - Rp + \frac{x^{2}}{2Rp}$$

$$\tau(r,\lambda) \approx \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(r-Rp)/H} \int_{-\infty}^{+\infty} e^{-x^{2}/2RpH} dx = \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(r-Rp)/H} H \sqrt{\frac{2\pi Rp}{H}}$$

Comparison with vertical optical depth:

$$\eta = rac{ au_H}{ au_V} = \sqrt{rac{2\pi Rp}{H}}$$

Earth: $\eta \sim 75$ K2-18 b: $\eta \sim 60$ HD209458 b: $\eta \sim 38$

Transits probe pressures 1-2 orders of magnitude lower than eclipses

Observer

Radiative transfer: transit spectroscopy

Ideal case:

- hydrostatic+isothermal
- cross-sections independent of P & T
- constant abundances

$$\tau(b,\lambda) = \sum_{i} \int_{-\infty}^{+\infty} \sigma_{i}(\lambda) n_{i}(x) dx \; ; \; p(z) = p(z_{0}) \exp\left(-\frac{z-z_{0}}{H}\right) \text{ with } H = \frac{RT}{Mg}$$
$$n_{i}(x) = ni_{0}e^{-z/H} \text{ with } z = \sqrt{r^{2} + x^{2}} - Rp \approx r - Rp + \frac{x^{2}}{2Rp}$$

$$\tau(r,\lambda) \approx \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(r-Rp)/H} \int_{-\infty}^{+\infty} e^{-x^{2}/2RpH} dx = \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(r-Rp)/H} H \sqrt{\frac{2\pi Rp}{H}}$$

Variation of transit depth:

$$\tau_1(r_1,\lambda_1) = \tau_2(r_2,\lambda_2) \approx 0.56 \; ; \; \Delta \boldsymbol{r} = \boldsymbol{Hln}\left(\frac{\sigma(\lambda_1)}{\sigma(\lambda_2)}\right); \; \Delta \boldsymbol{D} = \frac{2RpHln\left(\frac{\sigma(\lambda_1)}{\sigma(\lambda_2)}\right)}{{R_\star}^2}$$

→ Transit spectroscopy easier for high scale height (e.g. hot giant planets) $\frac{\sigma(\lambda_{max})}{\sigma(\lambda_{min})} \approx 10^3 \rightarrow \Delta r \approx 7H$

→ Transit depth at low resolution depends on the **mean value of** $ln(\sigma)$

Radiative transfer: transit spectroscopy

Opacity of H₂O and CH₄ (at 300K & 1 mbar) computed with the online tool DACE/OPACITY (https://dace.unige.ch/opacity/)

at 1.4 μ m: $\frac{\overline{\sigma_{H_2O}}}{\overline{\sigma_{CH_4}}} \approx 10$; $\frac{\overline{\ln(\sigma_{H_2O})}}{\overline{\ln(\sigma_{CH_4})}} \approx 0.1$

 H_2O should be masked by CH_4 at low resolution but not at high resolution

Radiative transfer: transit spectroscopy

Example K2-18 b:

<u>K2-18b:</u>

Mass = 8.63 M_{\oplus} Radius = 2.6 R_{\oplus} Irradiation = 1368 W/m² (1361 W/m² for the Earth) Orbital period = 33 days

A temperate sub-Neptune, with water vapour and potentially water clouds

HST transit spectrum

16

Radiative transfer: transit spectroscopy

Example K2-18 b:

Transit spectra of K2-18 b computed with Exo-REM (metallicity= $200 \times solar$)

Bézard, Charnay & Blain (2022)

CH₄ should be the dominant absorber for a solar C/O H₂O should be the dominant absorber for C/O $<0.1\times$ C/O_{solar}

Radiative transfer: definition of intensity and flux

Intensity *I* = amount of energy passing through a surface area dS, within a solid angle $d\Omega$, per wavelenght interval θ $d\lambda$, per unit time (*I* in J m⁻² sr⁻¹ μm^{-1}): $dE = I(x, \vec{n}, \lambda, t) \vec{n} \cdot \vec{k} d\Omega dS d\lambda dt$ dS Moments: $\int J = \int_{\Omega} I(x, \vec{n}, \lambda, t) d\Omega$ Mean intensity: Flux: $\int_{\Omega} I(x, \vec{n}, \lambda, t) \vec{n} \cdot \vec{k} d\Omega = \iint I(x, \theta, \varphi, \lambda, t) \cos(\theta) \sin(\theta) d\theta d\phi$

Radiative transfer: equation for plane-parallel

Optical depth & extinction coefficient: $d\tau = -k (T, P, \lambda) \mu \, ds$ $k(T, P, \lambda) = \sum_{i} n_i (\sigma_i^{abs} + \sigma_i^{scat})$ Optical mean free path: $l = \frac{1}{k}$

Radiative transfer equation:

$$\mu \frac{dI}{d\tau} = I - S$$

Local thermodynamic Equilibrium (LTE): T_{radiation}=T_{kinetics} mean free path of photons ≪ length scale of T variations

Solution a purely emitting atmosphere

$$\mu \frac{dI}{d\tau} = I - B$$

$$B(T,\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

i

Intensity at top of the atmosphere:

$$I(\tau = 0, \mu, \phi, \lambda) = B(T(\tau_0), \lambda)e^{-\frac{\tau_0}{\mu}} + \int_0^{\tau_0} B(T(\tau), \lambda) e^{-\tau/\mu} \frac{d\tau}{\mu}$$
Transmittance
Flux at top of the atmosphere
(outgoing radiation):

$$F^{\uparrow}(\tau = 0, \lambda) = \int_0^{2\pi} \int_0^1 \mu I(\tau = 0, \mu, \phi, \lambda) d\mu d\phi$$
Resolution with Gauss-quadrature:

$$F^{\uparrow}(\tau = 0, \lambda) = 2\pi \sum_{i=1}^{N_a} \mu_i I(\tau = 0, \mu_i, \lambda) \omega_i$$

The two-stream approximation

$$\mu \frac{dI}{d\tau} = I - S$$

<u>Goal:</u> to compute the total upward and downward flux

$$J_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} I \, d\mu \, d\phi,$$
$$J_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} I \, d\mu \, d\phi,$$
$$F_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} \mu I \, d\mu \, d\phi,$$
$$F_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} \mu I \, d\mu \, d\phi,$$

The two-stream solution consists in approximating I so that it is related to F.

We assume
$$\frac{F^{\uparrow}}{J^{\uparrow}} = \frac{F^{\downarrow}}{J^{\downarrow}} = \frac{1}{\gamma} \Leftrightarrow \mu = \frac{1}{\gamma}$$

(generally $\gamma = \sqrt{3}$)

The two-stream approximation

Link between thermal structure and emission

Case of a purely emitting atmosphere:

Variation of thermal flux:

 $\frac{\delta F}{F} \approx -\frac{T}{B} \frac{\partial B}{\partial T} \frac{dlnT}{dlnP} \frac{\delta k}{k}$

For $\delta k > 0$:

- $\frac{\delta F}{F} < 0 \rightarrow \frac{dT}{dz} < 0$ (no thermal inversion)
- $\frac{\delta F}{F} > 0 \rightarrow \frac{dT}{dz} > 0$ (thermal inversion)
- $\frac{\delta F}{F} \approx 0 \rightarrow \frac{dT}{dz} \approx 0$ (isothermal)

The emission spectrum with/without thermal inversion

Link between thermal structure and emission

Earth's thermal emission

Where is the signature of the stratospheric thermal inversion in the emission spectrum ?

Link between thermal structure and emission

Methods for solving RT

General case of the two-stream approximation (thermal emission + scattering)

$$\begin{aligned} \frac{\partial F^{\uparrow}}{\partial \tau} &= \gamma_1 F^{\uparrow} - \gamma_2 F^{\downarrow} - 2\pi (1 - \omega_0) B\\ \frac{\partial F^{\downarrow}}{\partial \tau} &= \gamma_2 F^{\uparrow} - \gamma_1 F^{\downarrow} + 2\pi (1 - \omega_0) B \end{aligned}$$

Method	γ_1	γ_2	μ_*
Quadrature	$\sqrt{3}[1 - \omega_0(1+g)/2]$	$\sqrt{3}\omega_0(1+g)/2$	$1/\sqrt{3}$
Hemispheric mean	$2-\omega_0(1+g)$	$\omega_0(1-g)$	1/2

Quadrature for deep atmosphere & Hemispheric mean for the upper atmosphere

See *Toon et al.* (1989) for the complete solution with multi-layers

Methods for solving RT

1) <u>Semi-grey analytical model</u>

Only for computing the thermal structure (e.g. for retrieval or thermal evolution)

Model of Guillot et al. (2010):

Two parameters (k_{vis} and k_{ir}) for visible (stellar) and infrared (planetary) radiation

 Models with sub-bands: e.g. Parmentier et al. (2014) and Robinson & Catling (2012):

One parameter for visible (k_{vis}) and three parameters for infrared $(k_{ir1}, k_{ir2}, \beta = \frac{\delta v_2}{\Delta v})$

2) <u>Correlated-k method</u>

Multiple sub-bands representative f the distribution of opacity inside a large band

Fast method, excellent for low and medium resolution Can combine different molecular species Widely used for atmospheric models and 3D GCM

28

1D Forward models

Methods for solving RT

1) Semi-grey analytical model

Only for computing the thermal structure (e.g. for retrieval or thermal evolution)

Model of Guillot et al. (2010):

Two parameters (k_{vis} and k_{ir}) for visible (stellar) and infrared (planetary) radiation

 <u>Models with sub-bands</u>: e.g. *Parmentier et al.* (2014) and *Robinson & Catling* (2012):

One parameter for visible (k_{vis}) and three parameters for infrared $(k_{ir1}, k_{ir2}, \beta = \frac{\delta v_2}{\Delta v})$

2) <u>Correlated-k method</u>

Exo_k: tool to compute kcoefficients for different formats (PCM GCM, Exomol, Nemesis, PetitCode, TauREx, Exo-REM, ARCIS): http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/index.html

Self-consistent models

Iterations until converged (difficult sometimes...)

Models available online:

Exo-REM, PICASO, ATMO, PetitCode, Exo_k

Avantage/disavantages:

+ Physical solutions

- Solutions biased by model parametrization
- Slow (cannot be run online in retrieval)

→ Ideal for limited dataset or limited parameter exploration and for predicting/interpreting observations

Parametric models

Avantage/disavantages:

 \rightarrow Ideal for atmospheric retrieval without be biased by model parametrizations

Chi2 with model grids

- Simplest method, used in particular for self-consistent models
- > Principe:
- N measurements $F_i^{obs} \pm \sigma_i$ (uncorrelated)
- F_i^{model} from a model
- Minimization of the cost function:

$$\chi^{2} = \sum_{i=1}^{n} \frac{\left(F_{i}^{obs} - F_{i}^{model}\right)^{2}}{\sigma_{i}^{2}}$$

$$\chi^2 = \chi^2_{min} + \Delta \chi^2$$

Simulation of GJ 504 b with MIRI-MRS (Mâlin et al. in prep):

Chi2 with model grids

JWST-NIRSpec spectrum of WASP-39 b (ERS)

Bayesian inference (MCMC & Nested-sampling)

A simple retrieval with a Guillot TP profile (5 parameters) + 3 molecule abundances (e.g. H_2O , CH_4 , CO) + clouds (P_{top}) + Rp = 10 free parameters !

- \rightarrow A statistical method is required to explore the parameter space, focusing on the best fits
- Bayesian inference

Bayesian inference (MCMC & Nested-sampling)

A simple retrieval with a Guillot TP profile (5 parameters) + 3 molecule abundances (e.g. H_2O , CH_4 , CO) + clouds (P_{top}) + Rp = 10 free parameters !

 \rightarrow A statistical method is required to explore the parameter space, focusing on the best fits

> Bayesian inference

Bayesian inference (MCMC & Nested-sampling)

1) Markov chain Monte Carlo (MCMC)

2) Nested Sampling

Ensemble of walkers converging toward best solutions (e.g. Pyrat Bay, Madhusudhan et al.)

Determination of volumes of equal likelihood (e.g. **Tau-Rex, petitRADTRANS,** NEMESIS, ARCiS, CHIMERA)

Nested sampling is more efficient to find global maximums of the likelihood

Bayesian inference (MCMC & Nest-sampling)

Bayesian inference (MCMC & Nest-sampling)

Strength of molecular detection with Bayes factor

Planet	Best-fit model	$\Delta \log(E)$	Detection	Absorbers (X)	μ (g/mol)
55 Cancri e	2-Active clear	29.94	strong	HCN	2.34
GJ 436 b	1-Primary	0.04	none	H ₂ O	2.31
GJ 1132 b	6-Flat-line	-	none	2	2.30
GJ 1214 b	3-Hidden absorber	3.53	strong	H_2O, N_2	27.90
GJ 3470 b	5- Water world	2.15	weak	H ₂ O	18.02
HAT-P-11 b	2-Active clear	9.99	strong	H_2O	4.43
HAT-P-26 b	4-Primary clear	43.12	strong	H ₂ O	2.32
HD 3167 c	2-Active clear	11.13	strong	H_2O, CO_2	2.84
HD 97658 b	2-Active clear	103.34	strong	HCN, CO2a	2.85
HD 106315 c	2-Active clear	16.63	strong	H ₂ O, NH ₃	5.94
HD 219666 b	2-Active clear	5.02	strong	H ₂ O	2.60
HIP 41378 b	4-Primary clear	2.44	weak	H ₂ O	2.32
K2-18 b	2-Active clear	3.47	strong	H ₂ O	2.43
K2-24 b	2-Active clear	0.39	none	NH ₃	4.71
LHS 1140 b	4-Primary clear	3.70	strong	H ₂ O	2.32
LTT 9779 b	2-Active clear	5.71	strong	CO ₂	2.31
TOI-270 c	2-Active clear	1.36	weak	CO ₂	27.51
TOI-270 d	2-Active clear	5.19	strong	H_2O, CO_2	2.44
TOI-674 b	5-Water world	17.86	strong	H_2O^b	8.87
TRAPPIST-1 b	2-Active clear	1.05	weak	CO, NH ₃	2.39
TRAPPIST-1 c	6-Flat-line	-	none		2.30
TRAPPIST-1 d	3-Hidden absorber	0.59	none	H ₂ O	2.32
TRAPPIST-1 e	1-Primary	0.49	none	NH ₃	2.32
TRAPPIST-1 f	1-Primary	0.10	none		2.31
TRAPPIST-1 g	6-Flat-line	121	none	(2)	2.30
TRAPPIST-1 h	6-Flat-line	1070	none	5	2.30

Gressier et al. (submitted)

Bayesian inference (MCMC & Nest-sampling)

Interpolated model grid for MCMC

Interesting for model grids with more than 3 parameters

Optimisation estimation

Method widely used for Earth atmosphere remote sensing and for solar system atmospheres

Principe: $J(x) = (y - F(x))^{T} S_{e}^{-1} (y - F(x)) + (x - x_{a})^{T} S_{a}^{-1} (x - x_{a})$ Minimization of a cost function: *y* = data vector *x* = model parameter vector A priori covariance matrix Error covariance matrix X_a = a priori vector F(x) = forward model χ^2 Weight of the a priori + correlation between parameters Correlation between temperatures of layer i and j: $S_{a,ij} = (S_{a,ii}S_{a,jj})^{1/2}e^{\frac{-|\ln(\frac{z_i}{P_j})|}{h}}$

Length of correlation

 \rightarrow Algorithm to iterate toward a state minimizing /

Optimisation estimation

Exploration of the impact of the a priori TP profile

A priori profiles can be provided by self-consistent models but their impact must be analysed

(NEMESIS)

Optimisation estimation is a fast method, ideal for high quality data or with additionnal constraints

Optimisation estimation

10-15 Flux (W/m²/µm) 10⁻¹⁰ NIRSpec IFU G140H/F100LP MIRI MRS Channel 2ABC NIRSpec IFU G235H/F170LP MIRI MRS Channel 3ABC NIRSpec IFU G395H/F290LP ---- MIRI MRS Channel 4A MIRI MRS Channel 1ABC 10⁻¹⁸ 10 15 20 25 3 2 Wavelength (μ m) Miles et al. (2022)

NIRSpec/MIRI-MRS spectrum of VHS 1256 b

Optimisation estimation has a great potential for brown dwarfs and young giant planets

Avantages/disavantages of each method

Chi2 with model grids:

- + Computed just once
- Limited number of free parameters
- Strongly biased by model parametrizations

 \rightarrow Ideal for limited parameter exploration (i.e. 2D/3D simulations) or low quality dataset

Bayesian inference (MCMC & Nested Sampling):

- + Better estimation of uncertainties than Chi2 maps and shows correlations
- + Exploration a large parameter space
- + Model selection (Bayes factor)
- Not efficient for retrieving profiles
- \rightarrow Ideal for most cases for exoplanets
- **Optimisation estimation:**
- + Efficient for retrieving profiles
- + Faster than Bayesian inference
- Requires a priori
- Limited exploration of possible solutions
- → Ideal for emission spectroscopy with high-quality dataset and additional constraints

A combinaison of methods/models can be very useful

1) Atmospheric models work !

43

1) Atmospheric models work !

Two main reasons for cases for which models do not work: missing physical processes or 3D effects

Exemple #1: H⁻ in ultra-hot Jupiters

Night

Day

Exemple #2: nightside clouds on hot Jupiters

2) Relative vs absolute measurements

C/O ≈ $\frac{[CO]}{[H_2O]+[CO]} = \frac{1}{\frac{[H_2O]}{[CO]}+1}$ (warm planets) → relative measurement

metallicity $\approx [H_2 O] / [H_2 O]_{solar}$

→ absolute measurement

Correlation between [H₂O] and [CO]: C/O must be derived directly as posterior Uncertainty on C/O smaller than on metallicity

Relative measurements are more accurate than absolute measurements

2) Relative vs absolute measurements

Comparison of retrieved parameters (BT-Settl & Exo-REM grids) for brown dwarfs observed with X-Shooter (R=4000)

Removing the continuum + renormalisation can improve the C/O determination at medium/high resolution (elimination of biases from models and observations)

3) Biases: metallicity/cloud

Line & Seager 2013

3) Biases: metallicity/cloud

How to probe cloudy/hazy atmospheres ?

- 1) Large spectral coverage (JWST, Ariel)
- 2) High-resolution spectroscopy (VLT-CRIRES, SPIRou, ELT-ANDES)
- 3) Thermal phase curves (JWST, Ariel)

4) Biases: thermal inversion

- Detection of a stratospheric thermal inversion on HD209458 b from Spitzer eclipses (Knutson et al. 2007)
- Two classes of hot Jupiters with a transition at $T_{day} \sim 1600$ K (Fortney et al. 2008)
- Thermal inversion ruled-out after reanalysis of Spitzer data (Diamond-Lowe et al. 2014)

Strong impact of instrumental systematics on retrieval

4) Biases: thermal inversion

Evolution of the water feature in eclipses

4) Biases: thermal inversion

Thermal inversions appear at higher temperatures ($T_{day} \sim 2000$ K) than initially thought

4) Biases: isothermal/clouds

ž

2M0122-24B (L3-4, ADMG) (x0.496) П Reddening of L dwarfs ₫ 3.0•10⁻¹⁵ ₫ • 2M2244+2043 (L6, ADMG) (x1.443) β/y/VL-G dwarfs x MO-M5 Ŧ M6-M9 8 0-15 2.5.10-15 6-19 ₫₫ T0-T5 10 SDSS0539-0059 (Field L5) (x0.301) m⁻².µm⁻¹] + constant UScoCTIO 108B ē dwarfs **H** 2.0.10-15 CD-352722B 12 • 4 1RXS1609b 2M0036+1821 (Field L3.5) ø 14 15 Flux [W ₫ đ 00 DENIS1058-1548 (Field L3) (x0.214) ð 2M1207b 16 x 51 Erib 1.0.10-15 • T dwarfs ₫ 2M1439+1929 (Field L1) 18 ₫ (X0.061) Interstellar (R=3.1) 0.5 um forsterite HIP 107412b 5.0·10-16 20 ₹ ₹ 0 2 3 -1 2M0345+2540 (Field L0) J_s-K1 ¢ 3.0 3.5 4.0 1.5 2.0 2.5 1.0 Wavelength [µm]

HD206893 b's spectrum = almost a black body

Delorme et al. (2017)

4) Biases: isothermal/clouds

How to reduce spectral features in emission spectra ?

4) Biases: isothermal/clouds

How to reduce spectral features in emission spectra ?

Tremblin et al. (2017) 54

4) Biases: isothermal/clouds

Atmospheric retrieval of two L dwarfs by Burningham et al. (2017):

But the retrieval might be biased by its relatively simple cloud model

4) Biases: isothermal/clouds

How to break degeneracis between clouds and reduced thermal gradient ?

- 1) Cloud absorption features
- 2) Thermal evolution

Silicate feature on VHS 1256 b

<u>But:</u>

- 1) Clouds can be a mixture of species (e.g. Jupiter's clouds)
- 2) Best et al. 2020 found a minimum of BD at the LT transition

56

5) Biases: 3D structure

Retrieval with cloud fraction:

00

Degeneracy between clouds and metallicity \rightarrow need measurements of Rayleigh slope or HR spectroscopy

5) Biases: 3D structure

- Measurements of C/O can be biased by chemical heterogeneities
- Chemical disequilibrium limits heterogeneities except at high temperature
- Phase curves can be used to map horizontal variations

5) Biases: 3D structure

Charnay et al. (2021)

60

5) Biases: 3D structure

6) Biases: time-variability

Variability of a brown dwarf with Spitzer

3D simulation of K2-18 b with water clouds

Possible variability of cloudiness and spectra

Take-home messages

> We are now in the golden age of exoplanet atmospheres !

- The different atmospheric models (self-consistent/parametric) and retrieval methods (grids, MCMC, optimisation estimation) have advantages and disavantages. Ideally, use a combinaison of models
- > Atmospheric models work (at least at first order) !
- > When models do not work, generally a physical process is missing or it is due to 3D effects
- > The interpretation of retrieval outputs is necessary and requires to understand the potential biases
- > Clouds/hazes and 3D effects are likely the largest sources of uncertainties and biases in atmospheric retrievals